Amit_Geman_Wilder_-_Joint_Induction_Shape_Trees

Amit_Geman_Wilder_-_Joint_Induction_Shape_Trees

ID:40048030

大小:731.24 KB

页数:6页

时间:2019-07-18

Amit_Geman_Wilder_-_Joint_Induction_Shape_Trees_第1页
Amit_Geman_Wilder_-_Joint_Induction_Shape_Trees_第2页
Amit_Geman_Wilder_-_Joint_Induction_Shape_Trees_第3页
Amit_Geman_Wilder_-_Joint_Induction_Shape_Trees_第4页
Amit_Geman_Wilder_-_Joint_Induction_Shape_Trees_第5页
资源描述:

《Amit_Geman_Wilder_-_Joint_Induction_Shape_Trees》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、1300IEEETRANSACTIONSONPATTERNANALYSISANDMACHINEINTELLIGENCE,VOL.19,NO.11,NOVEMBER1997JointInductionofShapeFeaturesandTreeClassifiersYaliAmit,DonaldGeman,andKennethWilderAbstract—Weintroduceaverylargefamilyofbinaryfeaturesfortwo-dimensionalshapes.Thesalientonesforseparatingp

2、articularshapesaredeterminedbyinductivelearningduringtheconstructionofclassificationtrees.Thereisafeatureforeverypossiblegeometricarrangementoflocaltopographiccodes.Thearrangementsexpresscoarseconstraintsonrelativeanglesanddistancesamongthecodelocationsandarenearlyinvariant

3、tosubstantialaffineandnonlineardeformations.Theyarealsopartiallyordered,whichmakesitpossibletonarrowthesearchforinformativeonesateachnodeofthetree.Differenttreescorrespondtodifferentaspectsofshape.Theyarestatisticallyweaklydependentduetorandomizationandareaggregatedinasimpl

4、eway.Adaptingthealgorithmtoashapefamilyisthenfullyautomaticoncetrainingsamplesareprovided.Asanillustration,weclassifyhandwrittendigitsfromtheNISTdatabase;theerrorrateis.7percent.IndexTerms—Shapequantization,featureinduction,invariantarrangements,multipledecisiontrees,random

5、ization,digitrecognition,localtopographiccodes.————————✦————————1INTRODUCTIONWErevisittheproblemoffindinggoodfeaturesforseparatingtwo-dimensionalshapeclassesinthecontextofinvarianceandinductivelearning.Thefeaturesetweconsiderisvirtuallyinfinite.Thesalientonesforaparticulars

6、hapefamilyaredeterminedfromtrainingsamplesduringtheconstructionofclassificationtrees.Weexperimentwithisolatedhandwrittendigits.Off-linerecognitionhasattractedenormousattention,includingacompetitionspon-soredbytheNationalInstituteofStandardsandTechnology(NIST)[1],andthereiss

7、tillnosolutionthatmatcheshumanper-formance.Manyapproachestodayarebasedonnonparametricstatisticalmethodssuchasneuralnetworks[2],[3],discriminantanalysis[4],[5],nearest-neighborruleswithdifferentmetrics[6],[7],[8],andclassificationtrees[9],[10].Hybridandmultipleclassi-fiersar

8、ealsoeffective[11],[12].Inmanycasesthefeaturevectordoesnotexplicitlyaddress“shape.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多
相关标签