欢迎来到天天文库
浏览记录
ID:40038451
大小:821.00 KB
页数:8页
时间:2019-07-18
《江苏省邗江中学2014年高二下学期期中考试数学(文)试卷》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、江苏省邗江中学2014年高二下学期期中考试数学(文)试卷本试卷分第Ⅰ卷(填空题)和第Ⅱ卷(解答题)两部分,满分为160分.考试时间120分钟.[来源:学科网ZXXK]注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答题纸上。2.答题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.参考公式:方差第Ⅰ卷 填空题 共70分一、填空题:本大题共14个小题,每小题5分,共70分,把
2、答案填在答题纸的横线上1.已知集合,集合,则▲.2.若复数为实数(为虚数单位),则实数=▲.3.已知某人连续5次投掷飞镖的环数分别为9,10,8,10,8,则该组数据的方差为▲.4.函数的定义域为▲.5.若将一枚硬币连续抛掷两次,则“至少出现一次正面向上”的概率为▲.[来源:学#科#网Z#X#X#K]6.已知函数,则▲.7.如图所示是一个算法的伪代码,执行此算法时,输出的结果为▲.8.二次函数的图像与轴的交点为和,则函数的最大值为▲.9.若命题“,”为真,则实数的取值范围为▲.10.函数在区间上为减函数,则实数的最大值为▲.11
3、.已知平行于轴的直线与函数及函数的图像分别交于、两点,若、两点之间的距离为,则实数的值为▲.1.给出下列数组:按照此规律进行下去.记第个()中各数的和为,则▲.2.已知函数是定义在上的偶函数,若方程恰有两个实根,则实数的取值范围是▲.3.关于的不等式的解集中恰有3个整数,则的取值范围为▲.第Ⅱ卷 解答题 共90分二、解答题:本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤.15.设不等式的解集为,集合.16.已知,(1)若,求的取值范围;(2)若,设,求的定义域和值域.17.已知是二次函数图像上两点,且.(1)
4、求的值;(2)求的图像在点处切线的方程;(2)设直线与和曲线的图像分别交于点、,求的最小值.18.在经济学中,函数的边际函数定义为.某造船厂每年最多造船20艘,造船台的产值函数(单位:万元),其成本函数(单位:万元),利润是产值与成本之差.(1)求利润函数及边际利润函数;(2)该造船厂每年造船多少艘,可使年利润最大?(3)有人认为“当利润最大时,边际利润也最大”,这种说法对不对?说明理由.19.已知定义在上的函数的图像过点和.(1)求常数的值;(2)判断函数的奇偶性,并说明理由;(3)解不等式.20.对于定义在区间上的函数,若任
5、给,均有,则称函数在区间上封闭.(1)试判断在区间上是否封闭,并说明理由;(2)若函数在区间上封闭,求实数的取值范围;[来源:学科网ZXXK](3)若函数在区间上封闭,求的值.[来源:学科网ZXXK]江苏省邗江中学2014年度第二学期高二数学(文科)期中试卷答案与评分细则一、填空题(本大题共14小题,每小题5分,共70分)1.2.3.4.5.6.7.8.9.10.11.或12.13.或14.二、解答题(本大题共6小题,共90分)15.解:(1)由题意…………………………………………2分又∵,则………………………4分[来源:Zxx
6、k.Com]∴…………………………………………7分(2)由题意可知:…………………………………………9分∴实数满足:…………………………………………12分解得…………………………………………14分16.解:(1)由得:若,则,解得:…………………………3分若,则,解得:…………………………6分综上所述:或…………………………7分(2),则,解得:…………………………10分∴∴…………………………13分∴的定义域为,值域为…………………………14分17.解:(1)由题意得:,解得…………………………3分(2)由(1)可得:,∴,则
7、的图像在点处切线的斜率为∴的图像在点处切线的方程为…………………………6分(3)由题意可得:…………………………7分令…………………………9分∴当单调减;当单调增.…………………………11分∴…………………………13分∴的最小值为…………………………14分18.解:(1)由题意:,…………………………2分,………………4分(缺少自变量范围,酌情扣分)(2)……………………6分当时,,递增;当时,,递减;……………………9分∴当时,利润最大.即造船厂每年造船12艘,可使年利润最大.……………………11分(3)∵边际利润函数∴在为减
8、函数……………………14分∴当时,边际利润最大.……………………15分∴“利润最大时,边际利润也最大”这一说法不正确.…………………16分19.解:(1)由题意得:,解得:…………………2分(2)由得:则…………………5分∴,即为奇函数.…………………6分(3)
此文档下载收益归作者所有