2005-A framework for learning predictive structures from multiple tasks and unlabeled data

2005-A framework for learning predictive structures from multiple tasks and unlabeled data

ID:40021550

大小:392.23 KB

页数:37页

时间:2019-07-17

2005-A framework for learning predictive structures from multiple tasks and unlabeled data_第1页
2005-A framework for learning predictive structures from multiple tasks and unlabeled data_第2页
2005-A framework for learning predictive structures from multiple tasks and unlabeled data_第3页
2005-A framework for learning predictive structures from multiple tasks and unlabeled data_第4页
2005-A framework for learning predictive structures from multiple tasks and unlabeled data_第5页
资源描述:

《2005-A framework for learning predictive structures from multiple tasks and unlabeled data》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、JournalofMachineLearningResearch6(2005)1817–1853Submitted5/05;Revised8/05;Published11/05AFrameworkforLearningPredictiveStructuresfromMultipleTasksandUnlabeledDataRieKubotaAndorie1@us.ibm.comIBMT.J.WatsonResearchCenterYorktownHeights,NY10598,U.S.A.TongZhangtzhang@yahoo-inc.c

2、omYahooResearchNewYork,NY,U.S.A.Editor:PeterBartlettAbstractOneofthemostimportantissuesinmachinelearningiswhetheronecanimprovetheperformanceofasupervisedlearningalgorithmbyincludingunlabeleddata.Methodsthatusebothlabeledandunlabeleddataaregenerallyreferredtoassemi-supervise

3、dlearning.Althoughanumberofsuchmethodsareproposed,atthecurrentstage,westilldon’thaveacompleteunderstandingoftheireffectiveness.Thispaperinvestigatesacloselyrelatedproblem,whichleadstoanovelapproachtosemi-supervisedlearning.Specificallyweconsiderlearningpredictivestructuresonh

4、ypothesisspaces(thatis,whatkindofclassifiershavegoodpredictivepower)frommultiplelearningtasks.Wepresentageneralframeworkinwhichthestructurallearningproblemcanbeformulatedandanalyzedtheoretically,andrelateittolearningwithunlabeleddata.Underthisframework,algorithmsforstructura

5、llearningwillbeproposed,andcomputationalissueswillbeinvestigated.Experimentswillbegiventodemonstratetheeffectivenessoftheproposedalgorithmsinthesemi-supervisedlearningsetting.1.IntroductionInmachinelearningapplications,onecanoftenfindalargeamountofunlabeleddatawithoutdifficulty

6、,whilelabeleddataarecostlytoobtain.Thereforeanaturalquestioniswhetherwecanuseunlabeleddatatobuildamoreaccurateclassifier,giventhesameamountoflabeleddata.Thisproblemisoftenreferredtoassemi-supervisedlearning.Ingeneral,semi-supervisedlearningalgorithmsusebothlabeledandunlabele

7、ddatatotrainaclassifier.Althoughanumberofmethodshavebeenproposed,theireffectivenessisnotalwaysclear.Forexample,Vapnikintroducedthenotionoftransductiveinference(Vapnik,1998),whichmayberegardedasanapproachtosemi-supervisedlearning.Al-thoughsomesuccesshasbeenreported(e.g.,seeJoa

8、chims,1999),therehasalsobeencriticismpointingoutthatthismethodmaynotbehavewellunde

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。