资源描述:
《[计算机软件及应用]数据结构图a》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.熟练掌握二叉树的结构特性,了解相应的证明方法。2.熟悉二叉树的各种存储结构的特点及适用范围。3.遍历二叉树是二叉树各种操作的基础。实现二叉树遍历的具体算法与所采用的存储结构有关。掌握各种遍历策略的递归算法,灵活运用遍历算法实现二叉树的其它操作。层次遍历是按另一种搜索策略进行的遍历。本章重点:4.理解二叉树线索化的实质是建立结点与其在相应序列中的前驱或后继之间的直接联系,熟练掌握二叉树的线索化过程以及在中序线索化树上找给定结点的前驱和后继的方法。二叉树的线索化过程是基于对二叉树进行遍历,而线索二叉树上的线索又为相应的遍历提供了方便。5.熟悉树的各种存储结构及其特点,掌握树和森林与二叉树的
2、转换方法。建立存储结构是进行其它操作的前提,因此应掌握1至2种建立二叉树和树的存储结构的方法。6.学会编写实现树的各种操作的算法。7.了解最优树的特性,掌握建立最优树和哈夫曼编码的方法。47.1图的基本术语其中:V是G的顶点集合,是有穷非空集;E是G的边集合,是有穷集。问:当E(G)为空时,图G存在否?答:还存在!但此时图G只有顶点而没有边。有向图:无向图:完全图:图G中的每条边都是有方向的;图G中的每条边都是无方向的;图G任意两个顶点都有一条边相连接;若n个顶点的无向图有n(n-1)/2条边,称为无向完全图若n个顶点的有向图有n(n-1)条边,称为有向完全图V=vertexE=edge图
3、:记为G=(V,E)v1v2v3v5v4v4v1v2v3v45证明:证明:若是完全有向图,则n个顶点中的每个顶点都有一条弧指向其它n-1个顶点,因此总边数=n(n-1)证明:从①可以直接推论出无向完全图的边数——因为无方向,两弧合并为一边,所以边数减半,总边数为n(n-1)/2。②完全无向图有n(n-1)/2条边。①完全有向图有n(n-1)条边。123412346例:判断下列4种图形各属什么类型?无向无向图(树)有向图有向n(n-1)/2条边n(n-1)条边G1的顶点集合为V(G1)={0,1,2,3}边集合为E(G1)={(0,1),(0,2),(0,3),(1,2),(1,3),(2,
4、3)}完全图完全图7稀疏图:稠密图:设有两个图G=(V,E)和G’=(V’,E’)。若V’V且E’E,则称图G’是图G的子图。子图:边较少的图。通常边数远少于nlogn边很多的图。无向图中,边数接近n(n-1)/2有向图中,边数接近n(n-1)8带权图:即边上带权的图。其中权是指每条边可以标上具有某种含义的数值(即与边相关的数)。连通图:在无向图中,若从顶点v1到顶点v2有路径,则称顶点v1与v2是连通的。如果图中任意一对顶点都是连通的,则称此图是连通图。非连通图的极大连通子图叫做连通分量。→带权图在有向图中,若对于每一对顶点vi和vj,都存在一条从vi到vj和从vj到vi的路径,则
5、称此图是强连通图。强连通图:网络:DEABCFJLMGHIK非强连通图的极大强连通子图叫做强连通分量。9生成树:是一个极小连通子图,它含有图中全部n个顶点,但只有n-1条边。若干棵生成树的集合,含全部顶点,但构成这些树的边或弧是最少的。有两类图形不在本章讨论之列:图的基本术语(续)v1v2v3v4如果在生成树上添加1条边,必定构成一个环。若图中有n个顶点,却少于n-1条边,必为非连通图。生成森林:10邻接点:有向边(u,v)称为弧,边的始点u叫弧尾,终点v叫弧头。顶点v的入度是以v为终点的有向边的条数,记作ID(v);顶点v的出度是以v为始点的有向边的条数,记作OD(v)。若(u,v)是E
6、(G)中的一条边,则称u与v互为邻接顶点。弧头和弧尾:入度和出度:问:当有向图中仅1个顶点的入度为0,其余顶点的入度均为1,此时是何形状?uv度:顶点v的度是与它相关联的边的条数。记作TD(v)。在有向图中,顶点的度等于该顶点的入度与出度之和。u的入度=?u的出度=?答:是树!而且是一棵有向树!11简单路径:路径上各顶点v1,v2,...,vm均不互相重复。回路:若路径上第一个顶点v1与最后一个顶点vm重合,则称这样的路径为回路或环。路径:在图G=(V,E)中,若从顶点vi出发,沿一些边经过一些顶点vp1,vp2,…,vpm,到达顶点vj。则称顶点序列(vivp1vp2...vpmvj)为
7、从顶点vi到顶点vj的路径。它经过的边(vi,vp1)、(vp1,vp2)、...、(vpm,vj)应当是属于E的边。路径长度:非带权图的路径长度是指此路径上边的条数;带权图的路径长度是指路径上各边的权之和。图的术语(续)图是一种数据元素间存在多对多关系的数据结构加上一组基本操作构成的抽象数据类型。ADTGraph{(参见教材P156-257)数据对象:V是具有相同特性的数据元素的集合,称为顶点集。数据关系:R={E}E