(Kaltenbacher)Parameter Identification

(Kaltenbacher)Parameter Identification

ID:39995138

大小:388.58 KB

页数:66页

时间:2019-07-16

(Kaltenbacher)Parameter Identification_第1页
(Kaltenbacher)Parameter Identification_第2页
(Kaltenbacher)Parameter Identification_第3页
(Kaltenbacher)Parameter Identification_第4页
(Kaltenbacher)Parameter Identification_第5页
资源描述:

《(Kaltenbacher)Parameter Identification》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、lecturenotesonParameterIdentificationinPartialDifferentialEquationsUniversityofLinzWS2005/06BarbaraKaltenbacherContents1Introduction41.1.Someexamples.................................42Theelectricalimpedancetomographyproblem92.1.Theinverseproblem..........

2、....................102.2.TransformationtoaSchr¨odingerequation..................102.3.Completenessofproductsofharmonicfunctions...............122.4.CompletenessofproductsofalmostexponentialsolutionsoftheSchr¨odingerequation.............................

3、........142.5.IdentifiabilityfortheSchr¨odingerequation..................182.6.IdentifiabilityfortheEITproblem......................193AninversesourceproblemforaparabolicPDE203.1.Inversesourceproblem.............................213.2.Orthogonality........

4、..........................213.3.Monotonicityprinciples.............................223.4.Uniqueness...................................234AninversecoefficientproblemforahyperbolicPDE274.1.Theinverseproblem..............................294.2.FormulationasaV

5、olterraintegralequation..................304.3.Uniqueness...................................325Aninversescatteringproblem355.1.Theforwardproblem..............................365.2.TheInverseproblem..............................416Numericalsolutiontechni

6、ques:Operatorequationmethods456.1.Preliminaries:Regularizationmethodsforlinearproblems.........466.2.Tikhonovregularizationfornonlinearproblems...............506.3.NonlinearLandweberIteration.........................546.3.1.BasicConditions..............

7、..............546.3.2.ConvergenceoftheLandweberIteration...............552Contents36.4.IterativelyRegularizedGauss-NewtonMethod................586.4.1.Convergenceanalysiswithaprioristoppingrule...........597Numericalsolutiontechniques:Thefactorizationme

8、thodforEIT651.IntroductionAlargevarietyofnatural,industrial,socialandeconomicalphenomenacanbemodeledby(systemsof)partialdifferentialequations(PDEs).WhendoingsimulationsbasedonaPDEmodel,itisassumedthatallinvolvedparameters—suchasco

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。