[PDF] Blind Source Separation and Independent Component Analysis

[PDF] Blind Source Separation and Independent Component Analysis

ID:39992098

大小:2.55 MB

页数:57页

时间:2019-07-16

[PDF] Blind Source Separation and Independent Component Analysis_第1页
[PDF] Blind Source Separation and Independent Component Analysis_第2页
[PDF] Blind Source Separation and Independent Component Analysis_第3页
[PDF] Blind Source Separation and Independent Component Analysis_第4页
[PDF] Blind Source Separation and Independent Component Analysis_第5页
资源描述:

《[PDF] Blind Source Separation and Independent Component Analysis》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、NeuralInformationProcessing-LettersandReviewsVol.6,No.1,January2005REVIEWBlindSourceSeparationandIndependentComponentAnalysis:AReviewSeungjinChoiDepartmentofComputerSciencePohangUniversityofScienceandTechnologySan31,Hyoja-dong,Nam-gu,Pohang,Gyungbuk790-784,KoreaE-mail:seungjin@postech.ac

2、.krAndrzejCichockiRIKEN,BrainScienceInstitute,2-1Hirosawa,Wako,Saitama351-0198,JapanWarsawUniversityofTechnology,PolandE-mail:cia@bsp.brian.riken.go.jpHyung-MinParkandSoo-YoungLeeDepartmentofBioSystems,DepartmentofElectricalEngineeringandComputerScience,andCHUNGMoonSoulCenterforBioInform

3、ationandBioElectronics,KoreaAdvancedInstituteofScienceandTechnology373-1Guseong-dong,Yuseong-gu,Daejeon305-701,KoreaE-mail:fhmpark,syleeg@kaist.ac.kr(SubmittedonOctober20,2004)Abstract-Blindsourceseparation(BSS)andindependentcomponentanalysis(ICA)aregenerallybasedonawideclassofunsupervis

4、edlearningalgorithmsandtheyfoundpotentialapplicationsinmanyareasfromengineeringtoneuroscience.ArecenttrendinBSSistoconsiderproblemsintheframeworkofmatrixfactorizationormoregeneralsignalsdecompositionwithprobabilisticgenerativeandtreestructuredgraphicalmodelsandexploitaprioriknowledgeabou

5、ttruenatureandstructureoflatent(hidden)variablesorsourcessuchasspatio-temporaldecorrelation,statisticalindependence,sparseness,smoothnessorlowestcomplexityinthesensee.g.,ofbestpredictability.Thepossiblegoalofsuchdecompositioncanbeconsideredastheestimationofsourcesnotnecessarystatisticall

6、yindependentandparametersofamixingsystemormoregenerallyasfindinganewreducedorhierarchicalandstructuredrepresentationfortheobserved(sensor)datathatcanbeinterpretedasphysicallymeaningfulcodingorblindsourceestimation.Thekeyissueistofindasuchtransformationorcoding(linearornonlinear)whichhastru

7、ephysicalmeaningandinterpretation.WepresentareviewofBSSandICA,includingvariousalgorithmsforstaticanddynamicmodelsandtheirapplications.Thepapermainlyconsistsofthreeparts:(1)BSSalgorithmsforstaticmodels(instantaneousmixtures);(2)extensionofBSSandICAincorporatingwithsparsene

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。