资源描述:
《The general theory of linear difference equations over the invertible max-plus algebra》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、Thegeneraltheoryoflineardierenceequationsovertheinvertiblemax-plusalgebraNaliniJoshi(nalini@maths.usyd.edu.au)andChrisOrmerod(chriso@maths.usyd.edu.au)SchoolofMathematicsandStatisticsF07,TheUniversityofSydneyAbstract.Wepresentthemathematicaltheoryunderlyingsystems
2、oflineardier-enceequationsovertheinvertiblemax-plusalgebra.TheresultprovidesananalogueofisomonodromytheoryforultradiscretePainleveequations,whichareextendedcel-lularautomata,andprovideevidencefortheirintegrability.OurtheoryisanalogoustothatdevelopedbyBirkhoandhi
3、sschoolforq-dierencelinearequationsbutstandsindependentlyofthelatter.AsanexamplewederivelinearproblemsinthisalgebraforultradiscreteversionsofthesymmetricPIVequationandshowhowitactsastheisomonodromicdeformationofthelinearsystem.Keywords:Integrablesystems,cellularau
4、tomata,monodromy,ultradiscrete,Painleve,TropicalMathematicalSubjectClassication(2000):39A20,14H70,16Y601.IntroductionThediscretePainleveequationsareintegrableinthesensethattheycanbesolvedthroughassociatedsystemsoflinearequations.Fordierenceequationsthelinearthe
5、orynecessaryforsolvabilitywasdevelopedbyBirkho[1]andhisschoolandimprovedbyRamisandhisschool[2].Thepurposeofourpaperistoprovidesuchatheoryforlinearultradiscreteequations,whichcanberegardedasequationsposedovertheinvertiblemax-plusalgebra.TheclassicalresultsofBirkho
6、wereextendedforsystemsofq-dierenceequationsin[3,4,5].RamisandhisschoolimprovedtheseresultsformanycasesanddevelopedanalyticGaloistheoryforq-dierenceequations[2].ThediscretePainleveequationshavebeenanareaofintenserecentresearch[6].JimboandSakai[7]werethersttoappl
7、yBirkhostheorytoaq-dierenceversionofthesixthPainleveequation.Inthispaper,weconsiderultradiscreteversionsofsuchdiscretePainleveequations.Ultradiscreteequationsareobtainedthroughalimitingprocessin-troducedin[8].TheultradiscretePainleveequationscanbeinterpretedas
8、integrablecellularautomata[6,9,10].UltradiscreteanaloguesofintegrableequationshavebeenshowntohaveLaxPairsoverthemax-plussemiring[11]and[12].Wecon