Measure, Integration & Probability

Measure, Integration & Probability

ID:39972095

大小:380.12 KB

页数:78页

时间:2019-07-16

Measure, Integration & Probability_第1页
Measure, Integration & Probability_第2页
Measure, Integration & Probability_第3页
Measure, Integration & Probability_第4页
Measure, Integration & Probability_第5页
资源描述:

《Measure, Integration & Probability》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、MEASURE,INTEGRATION&PROBABILITYIvanFWildeMathematicsDepartmentKing'sCollegeLondonChapter1¾-algebrasandBorelfunctionsPreliminarydiscussion²SupposethatXisacontinuousrandomvariable.ThenProb(X=s)=0foranys2R.However,theeventfX2RghasprobabilityoneandisthedisjointunionoftheeventsfX=sgfors2R;[fX2Rg=fX=sg

2、:sEacheventontherighthandsidehasprobabilityzero,sotheprobabilitiesoftheeventsontherighthandsidedonotaddup"tothatofthelefthandside.Wewishtounderstandthis.²SupposethatXisarandomvariableonasamplespace•,andsupposethatXtakesvaluesx1;x2;:::.PutAi=f!2•:X(!)=xig.ThenXEX=xiProb(X=xi)iX=xiProb(Ai):i(1;!2A

3、iInparticular,for1lAi(!)=,0;!=2AiE1lAi=1Prob(1lAi=1)=Prob(Ai):PAlsoE(xi1lAi)=xiProb(Ai).ButwecanwriteX=ixi1lAiandwerecoverEXasXXEX=xiProb(Ai)=E(xi1lAi):iiHereXisastep-function"on•.Thisformulaformsthebasisforthegeneral"expectation,i.e.,thatforanarbitraryrandomvariable.12Chapter1²Onemust(sometime

4、s)askwhichsubsetsofasamplespacearedeemedtobeevents.Canonetakeallsubsetsofthesamplespacetobeevents?Theanswerissometimesyesandsometimesno.Forexample,inthecasewhentheprobabilityofaneventwithinaboundedregionofR3isrequiredtobeproportionaltothevolumeassociatedwiththeevent,thenonenaturallyaskswhethereve

5、rysubsetof(aboundedregion)ofR3actuallyhasavolume.ThatthisisnotsoisdemonstratedbytheBanach-Tarskitheorem.(ThissaysthataballofunitradiusinR3canbecutupintoa¯nitenumberofpieceswhichcanthenbereassembledtoformaballofradius2.Themeaningofvolume"forthesepiecesisnotclear.)Wemustbepreciseabouttheconceptof

6、event".Inthemodern"(Kol-mogorov)theoryofprobability,thisisformulatedintermsof¾-algebras.De¯nition1.1.Acollection§ofsubsetsofanon-emptysetXiscalleda¾-algebraif(i)X2§,(ii)ifA2§,thenAc=XnA2§,S1(iii)ifAn2§forn=1;2;:::,thenn=1An2§.Thesetsin§arecalledmeasurablesets,and(X;§)iscalledamea-surablespace".

7、Remarks1.2.1.Since?=Xc,itfollowsthat?2§.2.ForanyA1;A2;:::;An2S§,putAn+1=An+2=¢¢¢=?.Thenwe1seethatA1[¢¢¢[An=k=1Ak2§,by(1)above,and(iii).T1¡S1c¢c3.LetTA1;A2;¢¢¢2§.Thensincen=1An=n=1An,weseethat1n=1An2§.IfwetakeAn+1=An+2=

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。