Analytic Number Theory Newman

Analytic Number Theory Newman

ID:39909855

大小:826.83 KB

页数:80页

时间:2019-07-14

Analytic Number Theory Newman_第1页
Analytic Number Theory Newman_第2页
Analytic Number Theory Newman_第3页
Analytic Number Theory Newman_第4页
Analytic Number Theory Newman_第5页
资源描述:

《Analytic Number Theory Newman》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、GraduateTextsinMathematics177EditorialBoardS.AxlerF.W.GehringK.A.RibetSpringerNewYorkBerlinHeidelbergBarcelonaHongKongLondonMilanParisSingaporeTokyoDonaldJ.NewmanAnalyticNumberTheory13DonaldJ.NewmanProfessorEmeritusTempleUniversityPhiladelphia,PA19122USAEditorialBoardS.AxlerF.W.GehringK.A.RibetDep

2、artmentofDepartmentofDepartmentofMathematicsMathematicsMathematicsSanFranciscoStateUniversityUniversityofMichiganUniversityofCaliforniaSanFrancisco,CA94132AnnArbor,MI48109atBerkeleyUSAUSABerkeley,CA94720-3840USAMathematicsSubjectClassification(1991):11-01,11N13,11P05,11P83LibraryofCongressCatalogin

3、g-in-PublicationDataNewman,DonaldJ.,1930–Analyticnumbertheory/DonaldJ.Newman.p.cm.–(Graduatetextsinmathematics;177)Includesindex.ISBN0-387-98308-2(hardcover:alk.paper)1.NumberTheory.I.Title.II.Series.QA241.N481997512’.73–dc2197-26431©1998Springer-VerlagNewYork,Inc.Allrightsreserved.Thisworkmaynotb

4、etranslatedorcopiedinwholeorinpartwithoutthewrittenpermissionofthepublisher(Springer-VerlagNewYork,Inc.,175FifthAvenue,NewYork,NY10010,USA),exceptforbriefexcerptsinconnectionwithreviewsorscholarlyanalysis.Useinconnectionwithanyformofinformationstorageandretrieval,electronicadaptation,computersoftw

5、are,orbysimilarordissimilarmethodologynowknownorhereafterdevelopedisforbidden.Theuseofgeneraldescriptivenames,tradenames,trademarks,etc.,inthispublication,eveniftheformerarenotespeciallyidentified,isnottobetakenasasignthatsuchnames,asunderstoodbytheTradeMarksandMerchandiseMarksAct,mayaccordinglybeu

6、sedfreelybyanyone.ISBN0-387-98308-2Springer-VerlagNewYorkBerlinHeidelburgSPIN10763456ContentsIntroductionandDedicationviiI.TheIdeaofAnalyticNumberTheory1AdditionProblems1ChangeMaking2CrazyDice5Canr(n)be“constant?”8ASplittingProblem8AnIdentityofEuler’s11MarksonaRuler12DissectionintoArithmeticProgre

7、ssions14II.ThePartitionFunction17TheGeneratingFunction18TheApproximation19RiemannSums20TheCoefficientsofq(n)25III.TheErdos–FuchsTheorem˝31Erdos–FuchsTheorem˝35IV.SequenceswithoutArithmeticProgressions41TheBasicApp

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。