解析几何知识点汇总

解析几何知识点汇总

ID:39904751

大小:607.00 KB

页数:8页

时间:2019-07-14

解析几何知识点汇总_第1页
解析几何知识点汇总_第2页
解析几何知识点汇总_第3页
解析几何知识点汇总_第4页
解析几何知识点汇总_第5页
资源描述:

《解析几何知识点汇总》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.直线的倾斜角与斜率:(1)直线的倾斜角:在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为叫做直线的倾斜角.倾斜角,斜率不存在.(2)直线的斜率:.(、).2.直线方程的五种形式:(1)点斜式:(直线过点,且斜率为).注:当直线斜率不存在时,不能用点斜式表示,此时方程为.(2)斜截式:(b为直线在y轴上的截距).(3)两点式:(,).注:①不能表示与轴和轴垂直的直线;②方程形式为:时,方程可以表示任意直线.(4)截距式:(分别为轴轴上的截距,且).注:不能表示与轴垂直的直线,也不能表示与轴垂直的直线,特别是不能表示过原点的直

2、线.(5)一般式:(其中A、B不同时为0).一般式化为斜截式:,即,直线的斜率:.注:(1)已知直线纵截距,常设其方程为或.已知直线横截距,常设其方程为(直线斜率k存在时,为k的倒数)或.已知直线过点,常设其方程为或.(2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合.3.直线在坐标轴上的截矩可正,可负,也可为0.(1)直线在两坐标轴上的截距相等直线的斜率为或直线过原点.(2)直线两截距互为相反数直线的斜率为1或直线过原点.(3)直线两截距绝对值相等直线的斜率为或直线过原点.4.两条直线的平行和垂直:(1)若,①;②.(2)若,,有①.②.5.平面

3、两点距离公式:(、),.8/8轴上两点间距离:.线段的中点是,则.6.点到直线的距离公式:点到直线的距离:.7.两平行直线间的距离:两条平行直线距离:.8.直线系方程:(1)平行直线系方程:①直线中当斜率一定而变动时,表示平行直线系方程..②与直线平行的直线可表示为.③过点与直线平行的直线可表示为:.(2)垂直直线系方程:①与直线垂直的直线可表示为.②过点与直线垂直的直线可表示为:.(3)定点直线系方程:①经过定点的直线系方程为(除直线),其中是待定的系数.②经过定点的直线系方程为,其中是待定的系数.(4)共点直线系方程:经过两直线交点的直线系方程为(除),其中λ是待定的系数.9.曲线

4、与的交点坐标方程组的解.10.圆的方程:(1)圆的标准方程:().(2)圆的一般方程:.8/8(3)圆的直径式方程:若,以线段为直径的圆的方程是:.注:(1)在圆的一般方程中,圆心坐标和半径分别是,.(2)一般方程的特点:①和的系数相同且不为零;②没有项;③(3)二元二次方程表示圆的等价条件是:①;②;③.11.圆的弦长的求法:(1)几何法:当直线和圆相交时,设弦长为,弦心距为,半径为,则:“半弦长+弦心距=半径”——;(2)代数法:设的斜率为,与圆交点分别为,则(其中的求法是将直线和圆的方程联立消去或,利用韦达定理求解)12.点与圆的位置关系:点与圆的位置关系有三种①在在圆外.②在在

5、圆内.③在在圆上.【到圆心距离】13.直线与圆的位置关系:直线与圆的位置关系有三种():圆心到直线距离为,由直线和圆联立方程组消去(或)后,所得一元二次方程的判别式为.;;.14.两圆位置关系:设两圆圆心分别为,半径分别为,8/8;;;;.15.圆系方程:(1)过点,的圆系方程:,其中是直线的方程.(2)过直线与圆:的交点的圆系方程:,λ是待定的系数.(3)过圆:与圆:的交点的圆系方程:,λ是待定的系数.特别地,当时,就是表示两圆的公共弦所在的直线方程,即过两圆交点的直线.16.圆的切线方程:(1)过圆上的点的切线方程为:.(2)过圆上的点的切线方程为:.(3)过圆上的点的切线方程为:

6、.(4)若P(,)是圆外一点,由P(,)向圆引两条切线,切点分别为A,B则直线AB的方程为(5)若P(,)是圆外一点,由P(,)向圆引两条切线,8/8切点分别为A,B则直线AB的方程为(6)当点在圆外时,可设切方程为,利用圆心到直线距离等于半径,即,求出;或利用,求出.若求得只有一值,则还有一条斜率不存在的直线.17.把两圆与方程相减即得相交弦所在直线方程:.18.空间两点间的距离公式:若,,则19、简单线性规划(确定可行域,求最优解,建立数学模型)⑴、目标函数:要求在一定条件下求极大值或极小值问题的函数。用关于变量是一次不等式(等式)表示的条件较线性约束条件。⑵、线性规划:求线性目标

7、函数在线性的约束条件下的最值问题二、轨迹问题(一)求轨迹的步骤1、建模:设点建立适当的坐标系,设曲线上任一点p(x,y)2、立式:写出适条件的p点的集合3、代换:用坐标表示集合列出方程式f(x,y)=04、化简:化成简单形式,并找出限制条件5、证明:以方程的解为坐标的点在曲线上(二)求轨迹的方法1、直接法:求谁设谁,按五步去直接求出轨迹2、定义法:利用已知或几何图形关系找到符合圆、椭圆、双曲线、抛物线的定义3、转移代入法:适用于一个动点随另一曲

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。