基本初等函数一复习

基本初等函数一复习

ID:39898242

大小:640.10 KB

页数:21页

时间:2019-07-14

基本初等函数一复习_第1页
基本初等函数一复习_第2页
基本初等函数一复习_第3页
基本初等函数一复习_第4页
基本初等函数一复习_第5页
资源描述:

《基本初等函数一复习》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第二章基本初等函数复习课整数指数幂有理指数幂无理指数幂指数对数定义运算性质指数函数对数函数幂函数定义图象与性质定义图象与性质知识要点1.整数指数幂的运算性质(1)am·an=am+n(m,n∈Z)(2)am÷an=am-n(a≠0,m,n∈Z)(3)(am)n=amn(m,n∈Z)(4)(ab)n=anbn(n∈Z)2.根式若xn=a,则x叫做a的n次方根,其中n>1,且n∈N*式子叫做根式,这里n叫做根指数,a叫做被开方数.3.根式的性质(1)当n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时,a的n次方根用符号表示

2、.(2)当n为偶数时,正数的n次方根有两个,它们互为相反数,这时,正数的正的n次方根用符号表示,负的n次方根用符号表示.正负两个n次方根可以合写为(a>0)(3)(4)当n为奇数时,;当n为偶数时,(5)负数没有偶次方根(6)零的任何次方根都是零()()îíì<³-=00aaaa()aann=4.分数指数幂的意义5.有理数指数幂的运算性质(1)ar·as=ar+s(a>0,r,s∈Q);(2)ar÷as=ar-s(a>0,r,s∈Q);(3)(ar)s=ars(a>0,r,s∈Q);(4)(ab)r=arbr(a>0,b>0,r∈Q)*

3、一般地,当a>0且是一个无理数时,也是一个确定的实数,故以上运算律对实数指数幂同样适用.2、已知,求的值ax=+-136322--+-xaxa656131212132)3()6)(2(bababa-¸-1、计算6.指数函数一般地,函数y=ax(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R7.指数函数的图象和性质在R上是减函数(4)在R上是增函数(3)过点(0,1),即x=0时,y=1(2)值域(0,+∞)(1)定义域:Ra>10

4、1,C2,C3,C4分别是函数y=ax,y=bx,y=cx,y=dx的图象,则a,b,c,d与1的大小关系是()(A)a<b<1<c<d(B)a<b<1<d<c(C)b<a<1<c<d(D)b<a<1<d<cD6.已知函数(a>1).判断函数f(x)的奇偶性;8.对数ab=NlogaN=b(a>0,a≠1),那么数b叫做以a为底N的对数,记作,其中a叫做对数的底数,N叫做真数,式子logaN叫做对数式常用对数:log10N=lgN自然对数:logeN=lnN.e=2.71828…9.对数恒等式叫做对数恒等式10.对数的性质(1)负数和零没有对数

5、;(2)1的对数是零,即loga1=0;(3)底数的对数等于1,即logaa=1(4)底真同值为正11.对数的运算法则如果a>0,a≠1,M>0,N>0,那么12换底公式注意换底公式在对数运算中的作用:①公式顺用和逆用;②由公式和运算性质推得的结论的作用.=1113.对数函数函数y=logax(a>0,且a≠1)叫做对数函数,其定义域为(0,+∞),值域为(-∞,+∞).因为对数函数y=logax与指数函数y=ax互为反函数,所以y=logax的图象与y=ax的图象关于直线y=x对称.14.对数函数的图象和性质对数函数y=logax的图象和性质

6、分a>1及0<a<1两种情况.注意作图时先作y=ax的图象,再作y=ax的图象关于直线y=x的对称曲线,就可以得到y=logax的图象,其图象和性质见下表14.对数函数的图象和性质a>101时,a值越大,y=logax的图像越靠近x轴;当0

7、常数.xyO函数性质y=xy=x2y=x3y=x-1定义域值域奇偶性单调性公共点幂函数的性质RRR[0,+∞)[0,+∞)[0,+∞)增[0,+∞)(0,+∞)减(-∞,0]减(-∞,0)减RR奇奇奇增增增偶非奇非偶{x

8、x≠0}{y

9、y≠0}(1,1)特别注意2.要充分利用指数函数和对数函数的概念、图象、性质讨论一些复合函数的性质,并进行总结回顾.1.研究指数、对数问题时尽量要为同底,另外,对数问题中要重视定义域的限制.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。