函数的极值与导数1课时

函数的极值与导数1课时

ID:39847571

大小:373.10 KB

页数:22页

时间:2019-07-13

函数的极值与导数1课时_第1页
函数的极值与导数1课时_第2页
函数的极值与导数1课时_第3页
函数的极值与导数1课时_第4页
函数的极值与导数1课时_第5页
资源描述:

《函数的极值与导数1课时》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.3.2函数的极值与导数aby=f(x)xoyy=f(x)xoyabf'(x)>0f'(x)<0函数的导数与单调性:一般地,设函数y=f(x)在某个区间(a,b)内有导数,如果在这个区间内f'(x)>0,那么函数y=f(x)在为这个区间内的增函数;如果在这个区间内f'(x)<0那么函数y=f(x)在为这个区间内的减函数.一、知识回顾:如果在某个区间内恒有,则为常数.求函数单调区间的步骤第1步:求函数的导函数;第2步:求导函数的零点(如果导函数在定义域上非正或非负,直接判断增减);第3步:用导函

2、数的零点将函数的定义域分成若干个区间(导函数不存在的点也要作为划分区间的端点考察);第4步:通过导函数在各个区 间的符号确定函数单调区间.特别注意:原函数的定义域关注用导数本质及其几何意义解决问题思考1:观察下图,当t=t0时,运动员距水面的高度最大,那么函数h(t)在此点的导数是多少呢?此点附近的图象有什么特点?相应地,导数的符号有什么变化规律?关注用导数本质及其几何意义解决问题问题2:我们知道正弦函数的五点作图法是利用函数的五个关键点作出图形的,利用图象的关键点与导数的关系,你能作出函数的图

3、象吗?上述作图中,图象的关键点十分重要,这些关键点与函数的导数有何联系?我们将进行研究x(-∞,0)0(0,2)2(2,+∞)y’+0-0+y↗7↘-1↗二、新课——函数的极值:oaX1X2X3X4baxy如图:探索思考:y=f(x)在这些点的导数值是多少?在这些点附近,y=f(x)的导数的符号有什么规律?oaX1X2X3X4baxy如图:探索思考:函数在X2处的函数值比它附近所有各点的函数值都小,f'(X2)=0,而且在X=X2的左侧f'(x)<0,右侧f'(x)>0.我们把点X1叫做y=f(

4、x)的极大值点,f(X1)叫函数y=f(x)的极大值;点X2叫做y=f(x)的极小值点,f(X2)叫函数y=f(x)的极小值;以X1,X2两点为例:函数在X1处的函数值比它附近所有各点的函数值都大,f''(X1)=0,而且在X=X1的左侧f'(x)>0,右侧f'(x)<0;oaX00bxyoaX0bxy如上左图所示,若x0是f(x)的极大值点,则x0两侧附近点的函数值必须小于f(x0).因此,x0的左侧附近f(x)只能是增函数,即;x0的右侧附近f(x)只能是减函数,即同理,如上右图所示,若x0

5、是f(x)极小值点,则在x0的左侧附近f(x)只能是减函数,即;在x0的右侧附近只能是增函数,即.极值点与附近函数值、导数值的关系:从而我们得出结论:对于可导函数,若x0满足f/(x)=0,且在x0的两侧的导数异号,则x0是f(x)的极值点,f(x0)是极值,并且:从曲线的切线角度看,可导函数的图象在极值点处切线的斜率为0,并且,曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正.(1)如果f/(x)在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(

6、x0)是极大值;(2)如果f/(x)在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值.极大值与极小值统称为极值.三、例题选讲:解:令,解得x1=-2,x2=2.当x变化时,,y的变化情况如下表:x(-∞,-2)-2(-2,2)2(2,+∞)y’+0-0+y↗极大值28/3↘极小值-4/3↗因此,当x=-2时有极大值,并且,y极大值=28/3;而,当x=2时有极小值,并且,y极小值=-4/3.练习1x(-∞,0)0(0,+∞)y’-不存在+y↘极小值0↗练习2x(-∞,0

7、)0(0,+∞)y’+0+y↗0↗四.探索思考:导数值为0的点一定是函数的极值点吗?可导函数的极值点一定是它导数为零的点,反之函数的导数为零的点,不一定是该函数的极值点.例如,函数y=x3,在点x=0处的导数为零,但它不是极值点,原因是函数在点x=0处左右两侧的导数都大于零.因此可导函数的导数为零的点仅是该点为极值点的必要条件,其充分条件是在这点两侧的导数异号.对一般函数,导数为零的是该点为极值点的既不必要也不充分条件.一般地,求函数y=f(x)的极值的方法是:(1):如果在x0附近的左侧f/(

8、x)>0右侧f/(x)<0,那么f(x0)是极大值;(2):如果在x0附近的左侧f/(x)<0右侧f/(x)>0,那么f(x0)是极小值.解方程f/(x)=0.当f/(x)=0时:注意:极值可能在函数不可导的点取到.如:x(-∞,-a)-a(-a,0)(0,a)a(a,+∞)f’(x)+0--0+f(x)↗极大值-2a↘↘极小值2a↗故当x=-a时,f(x)有极大值f(-a)=-2a;当x=a时,f(x)有极小值f(a)=2a.(注:利用奇函数求更易)解:函数的定义域为令,解得x1=-a,x2=

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。