欢迎来到天天文库
浏览记录
ID:39837794
大小:373.80 KB
页数:25页
时间:2019-07-12
《三角形地内角和与外角地性质(含问题详解)》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、1、(2011•昭通)将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为( )A、45°B、60°C、75°D、85°2、(2011•义乌市)如图,已知AB∥CD,∠A=60°,∠C=25°,则∠E等于( )A、60°B、25°C、35°D、45°3、(2011•台湾)如图中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角.关于这七个角的度数关系,下列何者正确( )A、∠2=∠4+∠7B、∠3=∠1+∠6C、∠1+∠4+∠6=
2、180°D、∠2+∠3+∠5=360°4、(2011•台湾)若△ABC中,2(∠A+∠C)=3∠B,则∠B的外角度数为何( )A、36B、72C、108D、1445、(2011•台湾)若钝角三角形ABC中,∠A=27°,则下列何者不可能是∠B的度数?( )A、37B、57C、77D、976、(2011•宁波)如图所示,AB∥CD,∠E=37°,∠C=20°,则∠EAB的度数为( )A、57°B、60°C、63°D、123°7、直角三角形中两锐角平分线所交成的角的度数是( )A、45°B、135°C
3、、45°或135°D、都不对8、(2009•荆门)如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=( )A、40°B、30°C、20°D、10°9、关于三角形的内角,下列判断不正确的是( )A、至少有两个锐角B、最多有一个直角C、必有一个角大于60°D、至少有一个角不小于60°10、如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=( )A、50°B、40°C、70°D、35°11、如图,将等边三角形ABC剪去一
4、个角后,则∠1+∠2的大小为( )A、120°B、180°C、200°D、240°12、在三角形的三个外角中,钝角的个数最多有( )A、3个B、2个C、1个D、0个13、如图在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是( )A、100°B、110°C、115°D、120°14、以下说法中,正确的个数有( )(1)三角形的内角平分线、中线、高都是线段;(2)三角形的三条高一定都在三角形的内部;(3)三角形的一条中线将此三角形分成两个
5、面积相等的小三角形;(4)三角形的3个内角中,至少有2个角是锐角.A、1B、2C、3D、415、若一个三角形的两个内角的平分线所成的钝角为145°,则这个三角形的形状为( )A、锐角三角形B、直角三角形C、钝角三角形D、等腰三角形16、已知:△ABC,现将∠A的度数增加1倍,∠B的度数增加2倍,刚好使∠C是直角,则∠A的度数可能是( )A、75°B、60°C、30°D、45°17、如图,BE、CF是△ABC的角平分线,且∠A=70°,那么∠BDC的度数是( )A、70°B、115°C、125°D、1
6、45°18、如图,∠ABC=31°,又∠BAC的平分线与∠FCB的平分线CE相交于E点,则∠AEC为( )A、14.5°B、15.5°C、16.5°D、20°19、(2010•武汉)如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是( )A、100°B、80°C、70°D、50°20、(2010•聊城)如图,l∥m,∠1=115°,∠2=95°,则∠3=( )A、120°B、130°C、140°D、150°21、(2009•湘西州)如图,l1∥l2
7、,∠1=120°,∠2=100°,则∠3=( )A、20°B、40°C、50°D、60°22、(2007•临沂)如图,△ABC中,∠A=50°,点D,E分别在AB,AC上,则∠1+∠2的大小为( )A、130°B、230°C、180°D、310°23、(2005•吉林)如图,在Rt△ADB中,∠D=90°,C为AD上一点,则x可能是( )A、10°B、20°C、30°D、40°24、(2003•台湾)如图是A、B两片木板放在地面上的情形.图中∠1、∠2分别为A、B两木板与地面的夹角,∠3是两木板问的
8、夹角.若∠3=110°,则∠2﹣∠1=( )A、55°B、70°C、90°D、l10°25、(2002•烟台)如图所示,在△ABC中,∠ABC和∠ACB的外角平分线交于点O,设∠BOC=a,则∠A等于( )A、90°﹣2αB、90°﹣C、180°﹣2αD、180°﹣26、如图,把△ABC纸片沿DE折叠,点A落在四边形BCDE的内部,则( )A、∠A=∠1+∠2B、2∠A=∠1+∠2C、3∠A=2∠1+∠2D、3∠A=2(
此文档下载收益归作者所有