Random walks and the Metropolis Algorithm

Random walks and the Metropolis Algorithm

ID:39761650

大小:303.70 KB

页数:28页

时间:2019-07-11

Random walks and the Metropolis Algorithm_第1页
Random walks and the Metropolis Algorithm_第2页
Random walks and the Metropolis Algorithm_第3页
Random walks and the Metropolis Algorithm_第4页
Random walks and the Metropolis Algorithm_第5页
资源描述:

《Random walks and the Metropolis Algorithm》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Chapter9RandomwalksandtheMetropolisalgorithmNelmezzodelcammindinostravita,miritrovaiperunaselvaoscura,chéladirittaviaerasmarrita.(DivinaCommedia,Inferno,CantoI,1-3)DanteAlighieriThewaythatcanbespokenofisnottheconstantway.(TaoTeChing,BookI,I.1)LaoTzu9.1Motivatio

2、nInthepreviouschapterwediscussedtechnicalaspectsofMonteCarlointegrationsuchasalgorithmsforgeneratingrandomnumbersandintegrationofmultidimensionalintegrals.Thelattertopicservedtoil-lustratetwokeytopicsinMonteCarlosimulations,namelyaproperselectionofvariablesandi

3、mportancesampling.Anintelligentselectionofvariables,goodsamplingtechniquesandguidingfunctionscanbecrucialfortheoutcomeofourMonteCarlosimulations.Examplesofthiswillbedemonstratedinthechaptersonstatisticalandquantumphysicsapplications.Herewemakeadetourfromthismai

4、nareaofapplications.Thefocusisondiffusionandrandomwalks.TherationaleforthisisthatthetrickypartofanactualMonteCarlosimulationresidesintheappropriateselectionofrandomstates,andtherebynum-bers,accordingtotheprobabilitydistribution(PDF)athand.Withappropriatethereis

5、howevermuchmoretothepicturethanmeetstheeye.SupposeourPDFisgivenbythewell-knownnormaldistribution.Thinkofforexamplethevelocitydistributionofanidealgasinacontainer.Inoursimulationswecouldthenacceptorrejectnewmoveswithaprobabilityproportionaltothenormaldistributio

6、n.Thiswouldparallelourexampleonthesixthdimensionalintegralinthepreviouschapter.However,inthiscasewewouldenduprejectingbasicallyallmovessincetheprobabilitiesareexponentiallysmallinmostcases.Theresultwouldbethatwebarelymovedfromtheinitialposition.Ourstatisticalav

7、erageswouldthenbesignificantlybiasedandmostlikelynotveryreliable.Instead,allMonteCarloschemesusedarebasedonMarkovprocessesinordertogeneratenewrandomstates.AMarkovprocessisarandomwalkwithaselectedprobabilityformakingamove.Thenewmoveisindependentoftheprevioushisto

8、ryofthesystem.TheMarkovprocessisusedrepeatedlyinMonteCarlosimulationsinordertogeneratenewrandomstates.ThereasonforchoosingaMarkovprocessisthatwhenitisrunforalongenoughtimest

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。