Scale-free random graphs and Potts model

Scale-free random graphs and Potts model

ID:39759866

大小:304.83 KB

页数:11页

时间:2019-07-11

Scale-free random graphs and Potts model_第1页
Scale-free random graphs and Potts model_第2页
Scale-free random graphs and Potts model_第3页
Scale-free random graphs and Potts model_第4页
Scale-free random graphs and Potts model_第5页
资源描述:

《Scale-free random graphs and Potts model》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、PRAMANA°cIndianAcademyofSciencesVol.64,No.6

2、journalofJune2005physicspp.1149{1159Scale-freerandomgraphsandPottsmodelD-SLEE1;2,K-IGOH1,BKAHNG1andDKIM11SchoolofPhysicsandCenterforTheoreticalPhysics,SeoulNationalUniversity,Seoul151-747,Korea2TheoretischePhysik,Univ

3、ersitÄatdesSaarlandes,66041SaarbrÄucken,GermanyAbstract.Weintroduceasimplealgorithmthatconstructsscale-freerandomgraphse±ciently:eachvertexihasaprescribedweightP/i¡¹(0<¹<1)andanedgeicanconnectverticesiandjwithratePiPj.Correspondingequilibriumensembleisidenti¯ed

4、andtheproblemissolvedbytheq!1limitoftheq-statePottsmodelwithinhomogeneousinteractionsforallpairsofspins.Thenumberofloopsaswellasthegiantclustersizeandthemeanclustersizeareobtainedinthethermodynamiclimitasafunctionoftheedgedensity.Variouscriticalexponentsassocia

5、tedwiththepercolationtransitionarealsoobtainedtogetherwith¯nite-sizescalingforms.Theprocessofformingthegiantclusterisqualitativelydi®erentbetweenthecasesof¸>3and2<¸<3,where¸=1+¹¡1isthedegreedistributionexponent.Whilefortheformer,thegiantclusterformsabruptlyatth

6、epercolationtransition,forthelatter,however,theformationofthegiantclusterisgradualandthemeanclustersizefor¯niteNshowsdoublepeaks.Keywords.Scale-freerandomgraph;percolationtransition;Pottsmodel.PACSNos89.70.+c;89.75.-k;05.70.Jk1.IntroductionGraphtheoreticapproac

7、hisofgreatvaluetocharacterizecomplexsystemsfoundinsocial,informationalandbiologicalareas.Here,asystemisrepresentedasagraphornetworkwhoseverticesandedgesstandforitsconstituentsandinteractions.AsimplemodelforsuchnetworksistherandomgraphmodelproposedbyErd}osandR¶e

8、nyi(ER)[1].IntheERmodel,Nnumberofverticesarepresentfromthebeginningandedgesareaddedonebyoneinthesystem,connectingpairsofverticesselectedrandomly.ThedegreedistributionisPoissonian.However,manyreal-worldnetworkssuchastheworld-wideweb,theInternet,thecoauthorship,t

9、heproteininteractionnetworksandsoondisplaypower-lawbehaviorsinthedegreedistribution.Suchnetworksarecalledscale-free(SF)networks[2].ThankstorecentextensivestudiesofSFnetworks

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。