高等数学基本概念、基本公式

高等数学基本概念、基本公式

ID:39728258

大小:1.48 MB

页数:93页

时间:2019-07-10

高等数学基本概念、基本公式_第1页
高等数学基本概念、基本公式_第2页
高等数学基本概念、基本公式_第3页
高等数学基本概念、基本公式_第4页
高等数学基本概念、基本公式_第5页
资源描述:

《高等数学基本概念、基本公式》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、目录一、函数与极限21、集合的概念22、常量与变量32、函数43、函数的简单性态44、反函数55、复合函数66、初等函数67、双曲函数及反双曲函数78、数列的极限89、函数的极限910、函数极限的运算规则11一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,

2、记作:a∈A,否则就说a不属于A,记作:aA。⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。⑶、全体整数组成的集合叫做整数集。记作Z。⑷、全体有理数组成的集合叫做有理数集。记作Q。⑸、全体实数组成的集合叫做实数集。记作R。集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作AB(或BA

3、)。。⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。即AA②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。集合的基本运算⑴、并集

4、:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A∪B。(在求并集时,它们的公共元素在并集中只能出现一次。)即A∪B={x

5、x∈A,或x∈B}。⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A∩B。即A∩B={x

6、x∈A,且x∈B}。⑶、补集:①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。②补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集。简称为集合A的补集,记作CUA。即CUA={x

7、x∈U,且xA}。集合中元

8、素的个数⑴、有限集:我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。⑵、用card来表示有限集中元素的个数。例如A={a,b,c},则card(A)=3。⑶、一般地,对任意两个集合A、B,有card(A)+card(B)=card(A∪B)+card(A∩B)我的问题:1、学校里开运动会,设A={x

9、x是参加一百米跑的同学},B={x

10、x是参加二百米跑的同学},C={x

11、x是参加四百米跑的同学}。学校规定,每个参加上述比赛的同学最多只能参加两项,请你用集合的运算说明这项规定,并解释以下集合运算的含义。⑴、A∪B;⑵、A∩B。2、在平面直角坐标系中,集合C

12、={(x,y)

13、y=x}表示直线y=x,从这个角度看,集合D={(x,y)

14、方程组:2x-y=1,x+4y=5}表示什么?集合C、D之间有什么关系?请分别用集合语言和几何语言说明这种关系。3、已知集合A={x

15、1≤x≤3},B={x

16、(x-1)(x-a)=0}。试判断B是不是A的子集?是否存在实数a使A=B成立?4、对于有限集合A、B、C,能不能找出这三个集合中元素个数与交集、并集元素个数之间的关系呢?5、无限集合A={1,2,3,4,…,n,…},B={2,4,6,8,…,2n,…},你能设计一种比较这两个集合中元素个数多少的方法吗?2、常量与变量⑴、变量的定义:我们在观察

17、某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。注:在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。⑵、变量的表示:如果变量的变化是连续的,则常用区间来表示其变化范围。在数轴上来说,区间是指介于某两点之间的线段上点的全体。区间的名称区间的满足的不等式区间的记号区间在数轴上的表示闭区间a≤x≤b[a,b]开区间a<x<b(a,b)半开区间a<x

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。