欢迎来到天天文库
浏览记录
ID:39667485
大小:416.50 KB
页数:18页
时间:2019-07-08
《被控对象的数学模型》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第2章被控对象的数学模型化工对象的特点及其描述方法对象数学模型的建立描述对象特性的参数调节器(控制器)被控对象测量变送环节(传感器、变送器)+-x执行器zeuqyf2.1化工对象的特点及其描述方法即对象受到输入作用后,被控变量是如何变化的、变化量为多少……输入量??控制变量+各种各样的干扰变量由对象的输入变量至输出变量的信号联系称为通道控制变量至被控变量的信号联系通道称控制通道干扰至被控变量的信号联系通道称干扰通道对象输出为控制通道输出与各干扰通道输出之和控制通道干扰通道干扰变量控制变量被控变量被控对象对象特性——是指对象输入量与输出量之间的关系(数学模型)数学模型的表示方法:参
2、量模型:通过数学方程式表示常用的描述形式:微分方程(组)*、传递函数*、频率特性等参量模型的微分方程的一般表达式:y(t)表示输出量,x(t)表示输入量,通常输出量的阶次不低于输入量的阶次(n≥m)当n=m时,称对象是正则的;当n>m时,称对象是严格正则的;n3、内部机理,从理论上来推导建立数学模型。由于工业对象往往都非常复杂,物理、化学过程的机理一般不能被完全了解,而且线性的并不多,一般很难完全掌握系统内部的精确关系式,故机理建模仅适用于部分相对简单的系统,而且在机理建模过程中,往往还需要引入恰当的简化、假设、近似、非线性的线性化处理等。实验建模实验建模——在所要研究的对象上,人为的施加一个输入作用,然后用仪表记录表征对象特性的物理量(输出)随时间变化的规律,得到一系列实验数据或曲线。这些数据或曲线就可以用来表示对象特性。实验建模的主要特点是把被研究的对象视为一个黑箱子,不管其内部机理如何,完全从外部特性上来测试和描述对象的动态特性。有4、时,为进一步分析对象特性,可对这些数据或曲线进行处理,使其转化为描述对象特性的解析表达式。混合建模混合建模——将机理建模与实验建模结合起来,称为混合建模。混合建模是一种比较实用的方法,它先由机理分析的方法提出数学模型的结构形式,把被研究的对象视为一个灰箱子,然后对其中某些未知的或不确定的参数利用实验的方法给予确定。这种在已知模型结构的基础上,通过实测数据来确定数学表达式中某些参数的方法,称为参数估计。对象机理数学模型的建立问题:处于平衡状态的对象加入干扰以后,不经控制系统能否自行达到新的平衡状态?左图:假设初始为平衡状态qi=qo,水箱水位保持不变。当发生变化时(qi>qo),此5、时水箱的水位开始升高根据流体力学原理,水箱出口流量与H是存在一定的对应关系的:因此,qiHqo,直至qi=qo可见该系统受到干扰以后,即使不加控制,最终自身是会回到新的平衡状态,这种特性称为“自衡特性”。右图:如果水箱出口由泵打出,其不同之处在于:qi当发生变化时,qo不发生变化。如果qi>qo,水位H将不断上升,直至溢出,可见该系统是无自衡能力。绝大多数对象都有自衡能力,一般而言有自衡能力的系统比无自衡能力的系统容易控制。·一阶线性对象问题:求右图所示的对象模型(输入输出模型)。解:该对象的输入量为qi被控变量为液位h根据物料平衡方程:单位时间内水槽体积的改变=输入流6、量—输出流量由于出口流量可以近似地表示为:(i)式是针对完全量的输入输出模型,(ii)式是针对变化量的输入输出模型,二者的结构形式完全相同。由于在控制领域中,特性的分析往往是针对变化量而言的,为了书写方便在以后的表达式中不写出变化量符号。对象特性的实验建模——在被控对象上人为加入输入量,记录表征对象特性的输出量随时间的变化规律。被控对象输入量输出量系统辨识对象模型阶跃信号脉冲信号伪随机信号……表格数据响应曲线……阶跃输入t0A加测试信号前,要求系统尽可能保持稳定状态,否则会影响测试结果;输入量/输出量的起始时间是相同的,起始时间是输入量的加入时间,输出量的响应曲线可能滞后于输入量7、的响应,其原因是纯滞后或容量滞后;在测试过程中尽可能排除其它干扰的影响,以提高测量精度;在相同条件下重复测试多次,以抽取其共性;在测试和记录的过程中,应持续到输出量达到新的稳态值;作为测试对象的工作点应该选择正常的工作状态(一般要求运行在额定负荷、正常干扰等条件下)。矩形脉冲t0t1A对象特性的混合建模由于机理建模和实验建模各优特点,目前比较实用的方法是将二者结合起来,成为混合建模。混合建模的过程:先通过机理建模获取数学模型的结构形式,通过实验建模(辨识)来求取(估计)模型的参数
3、内部机理,从理论上来推导建立数学模型。由于工业对象往往都非常复杂,物理、化学过程的机理一般不能被完全了解,而且线性的并不多,一般很难完全掌握系统内部的精确关系式,故机理建模仅适用于部分相对简单的系统,而且在机理建模过程中,往往还需要引入恰当的简化、假设、近似、非线性的线性化处理等。实验建模实验建模——在所要研究的对象上,人为的施加一个输入作用,然后用仪表记录表征对象特性的物理量(输出)随时间变化的规律,得到一系列实验数据或曲线。这些数据或曲线就可以用来表示对象特性。实验建模的主要特点是把被研究的对象视为一个黑箱子,不管其内部机理如何,完全从外部特性上来测试和描述对象的动态特性。有
4、时,为进一步分析对象特性,可对这些数据或曲线进行处理,使其转化为描述对象特性的解析表达式。混合建模混合建模——将机理建模与实验建模结合起来,称为混合建模。混合建模是一种比较实用的方法,它先由机理分析的方法提出数学模型的结构形式,把被研究的对象视为一个灰箱子,然后对其中某些未知的或不确定的参数利用实验的方法给予确定。这种在已知模型结构的基础上,通过实测数据来确定数学表达式中某些参数的方法,称为参数估计。对象机理数学模型的建立问题:处于平衡状态的对象加入干扰以后,不经控制系统能否自行达到新的平衡状态?左图:假设初始为平衡状态qi=qo,水箱水位保持不变。当发生变化时(qi>qo),此
5、时水箱的水位开始升高根据流体力学原理,水箱出口流量与H是存在一定的对应关系的:因此,qiHqo,直至qi=qo可见该系统受到干扰以后,即使不加控制,最终自身是会回到新的平衡状态,这种特性称为“自衡特性”。右图:如果水箱出口由泵打出,其不同之处在于:qi当发生变化时,qo不发生变化。如果qi>qo,水位H将不断上升,直至溢出,可见该系统是无自衡能力。绝大多数对象都有自衡能力,一般而言有自衡能力的系统比无自衡能力的系统容易控制。·一阶线性对象问题:求右图所示的对象模型(输入输出模型)。解:该对象的输入量为qi被控变量为液位h根据物料平衡方程:单位时间内水槽体积的改变=输入流
6、量—输出流量由于出口流量可以近似地表示为:(i)式是针对完全量的输入输出模型,(ii)式是针对变化量的输入输出模型,二者的结构形式完全相同。由于在控制领域中,特性的分析往往是针对变化量而言的,为了书写方便在以后的表达式中不写出变化量符号。对象特性的实验建模——在被控对象上人为加入输入量,记录表征对象特性的输出量随时间的变化规律。被控对象输入量输出量系统辨识对象模型阶跃信号脉冲信号伪随机信号……表格数据响应曲线……阶跃输入t0A加测试信号前,要求系统尽可能保持稳定状态,否则会影响测试结果;输入量/输出量的起始时间是相同的,起始时间是输入量的加入时间,输出量的响应曲线可能滞后于输入量
7、的响应,其原因是纯滞后或容量滞后;在测试过程中尽可能排除其它干扰的影响,以提高测量精度;在相同条件下重复测试多次,以抽取其共性;在测试和记录的过程中,应持续到输出量达到新的稳态值;作为测试对象的工作点应该选择正常的工作状态(一般要求运行在额定负荷、正常干扰等条件下)。矩形脉冲t0t1A对象特性的混合建模由于机理建模和实验建模各优特点,目前比较实用的方法是将二者结合起来,成为混合建模。混合建模的过程:先通过机理建模获取数学模型的结构形式,通过实验建模(辨识)来求取(估计)模型的参数
此文档下载收益归作者所有