Clementine12中的数据挖掘算法

Clementine12中的数据挖掘算法

ID:39547242

大小:87.00 KB

页数:4页

时间:2019-07-06

Clementine12中的数据挖掘算法_第1页
Clementine12中的数据挖掘算法_第2页
Clementine12中的数据挖掘算法_第3页
Clementine12中的数据挖掘算法_第4页
资源描述:

《Clementine12中的数据挖掘算法》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、Clementine12中的数据挖掘算法SPSS2010-03-3108:39:10阅读14评论0字号:大中小     最近老有朋友问我Clementine12中都有哪些算法?感觉Clementine12中的算法很多,很齐全并且根据商业目的做了大体的分类(预测的、分类的、细分的、关联的),所以大家只要清楚自己的商业问题是哪类问题、用什么算法能达到自己想要的目的就可以根据Clementine12中的模型划分,迅速的找到自己想要的mode;下图是Clementine12中所有数据挖掘的算法:     下面是谢邦昌教授的数据挖掘(DataMining)十种分析方法,以

2、便于大家对模型的初步了解,不过也是日常挖掘中经常遇到的算法,希望对大家有用!(甚至有数据挖掘公司,用其中的一种算法就能独步天下)1、记忆基础推理法(Memory-BasedReasoning;MBR)        记忆基础推理法最主要的概念是用已知的案例(case)来预测未来案例的一些属性(attribute),通常找寻最相似的案例来做比较。        记忆基础推理法中有两个主要的要素,分别为距离函数(distancefunction)与结合函数(combinationfunction)。距离函数的用意在找出最相似的案例;结合函数则将相似案例的属性结合起来

3、,以供预测之用。记忆基础推理法的优点是它容许各种型态的数据,这些数据不需服从某些假设。另一个优点是其具备学习能力,它能藉由旧案例的学习来获取关于新案例的知识。较令人诟病的是它需要大量的历史数据,有足够的历史数据方能做良好的预测。此外记忆基础推理法在处理上亦较为费时,不易发现最佳的距离函数与结合函数。其可应用的范围包括欺骗行为的侦测、客户反应预测、医学诊疗、反应的归类等方面。 2、市场购物篮分析(MarketBasketAnalysis)        购物篮分析最主要的目的在于找出什么样的东西应该放在一起?商业上的应用在藉由顾客的购买行为来了解是什么样的顾客以及

4、这些顾客为什么买这些产品,找出相关的联想(association)        规则,企业藉由这些规则的挖掘获得利益与建立竞争优势。举例来说,零售店可藉由此分析改变置物架上的商品排列或是设计吸引客户的商业套餐等等。        购物篮分析基本运作过程包含下列三点:        (1)选择正确的品项:这里所指的正确乃是针对企业体而言,必须要在数以百计、千计品项中选择出真正有用的品项出来。        (2)经由对共同发生矩阵(co-occurrencematrix)的探讨挖掘出联想规则。        (3)克服实际上的限制:所选择的品项愈多,计算所耗费的

5、资源与时间愈久(呈现指数递增),此时必须运用一些技术以降低资源与时间的损耗。        购物篮分析技术可以应用在下列问题上:        (1)针对信用卡购物,能够预测未来顾客可能购买什么。        (2)对于电信与金融服务业而言,经由购物篮分析能够设计不同的服务组合以扩大利润。        (3)保险业能藉由购物篮分析侦测出可能不寻常的投保组合并作预防。        (4)对病人而言,在疗程的组合上,购物篮分析能作为是否这些疗程组合会导致并发症的判断依据。   3、决策树(DecisionTrees)        决策树在解决归类与预测上有着

6、极强的能力,它以法则的方式表达,而这些法则则以一连串的问题表示出来,经由不断询问问题最终能导出所需的结果。典型的决策树顶端是一个树根,底部有许多的树叶,它将纪录分解成不同的子集,每个子集中的字段可能都包含一个简单的法则。此外,决策树可能有着不同的外型,例如二元树、三元树或混和的决策树型态。   4、基因算法(GeneticAlgorithm)        基因算法学习细胞演化的过程,细胞间可经由不断的选择、复制、交配、突变产生更佳的新细胞。基因算法的运作方式也很类似,它必须预先建立好一个模式,再经由一连串类似产生新细胞过程的运作,利用适合函数(fitnessf

7、unction)决定所产生的后代是否与这个模式吻合,最后仅有最吻合的结果能够存活,这个程序一直运作直到此函数收敛到最佳解。基因算法在群集(cluster)问题上有不错的表现,一般可用来辅助记忆基础推理法与类神经网络的应用。   5、群集侦测技术(ClusterDetection)        这个技术涵盖范围相当广泛,包含基因算法、类神经网络、统计学中的群集分析都有这个功能。它的目标为找出数据中以前未知的相似群体,在许许多多的分析中,刚开始都运用到群集侦测技术,以作为研究的开端。   6、连结分析(LinkAnalysis)        连结分析是以数学中之

8、图形理论(graphth

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。