《对偶单纯形法》PPT课件

《对偶单纯形法》PPT课件

ID:39490481

大小:301.10 KB

页数:18页

时间:2019-07-04

《对偶单纯形法》PPT课件_第1页
《对偶单纯形法》PPT课件_第2页
《对偶单纯形法》PPT课件_第3页
《对偶单纯形法》PPT课件_第4页
《对偶单纯形法》PPT课件_第5页
资源描述:

《《对偶单纯形法》PPT课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.3对偶单纯形法一、什么是对偶单纯形法?对偶单纯形法是应用对偶原理求解原始线性规划的一种方法——在原始问题的单纯形表格上进行对偶处理。注意:不是求解对偶问题的单纯形法!LP原问题:设B是A中的一个基可行基若B对应的解是基本可行解,则B是可行基对偶可行基若单纯形乘子是对偶问题的可行解,则B是对偶可行基是对偶问题的可行解检验数等价证明:二、对偶单纯形法的基本思想1、对“单纯形法”求解过程认识的提升——从更高的角度理解单纯形法初始可行基(对应一个初始基本可行解)→迭代→另一个可行基(对应另一个基本可行解),直至所有检验数≤0为止。所有检验

2、数≤0意味着,说明原始问题的最优基也是对偶问题的可行基。换言之,当原始问题的基B既是可行基又是对偶可行基时,B成为最优基。定理2-5B是线性规划的最优基的充要条件是,B是可行基,同时也是对偶可行基。对偶单纯形法的思想(图示)原问题初始基本可行解保持为基本可行解初始对偶可行解保持对偶可行性最优解基本可行性对偶可行性始终满足解的可行性始终满足对偶可行性单纯形法的求解过程就是:在保持基本可行的前提下(b列保持≥0),通过逐步迭代实现对偶可行(检验数行≤0)。从非对偶可行解变成对偶可行解。2、对偶单纯形法思想:换个角度考虑LP求解过程:保持对

3、偶可行的前提下(检验数行保持≤0),通过逐步迭代实现基本可行(b列≥0,从非可行解变成可行解)。三、对偶单纯形法的实施1、使用条件:①检验数全部≤0;②解答列至少一个元素<0;2、实施对偶单纯形法的基本原则:在保持对偶可行的前提下进行基变换——每一次迭代过程中取出基变量中的一个负分量作为换出变量去替换某个非基变量(作为换入变量),使原始问题的非可行解向可行解靠近。3、计算步骤:①建立初始单纯形表,计算检验数行。解答列≥0——已得最优解;至少一个元素<0,转下步;解答列≥0——原始单纯形法;至少一个元素<0,另外处理;检验数全部≤0(非

4、基变量检验数<0)至少一个检验数>0基变换:先确定换出变量——解答列中的负元素(一般选最小的负元素)对应的基变量出基;即相应的行为主元行。若,要计算最小比值吗?为什么?然后确定换入变量——原则是:在保持对偶可行的前提下,减少原始问题的不可行性。如果(最小比值原则),则选为换入变量,相应的列为主元列,主元行和主元列交叉处的元素为主元素。按主元素进行换基迭代(旋转运算、枢运算),将主元素变成1,主元列变成单位向量,得到新的单纯形表。继续以上步骤,直至求出最优解。课后小组讨论4讨论对偶单纯形法中确定换入变量的最小比值原则的依据,给出详细

5、的证明过程(附上必要的说明,可以采用必要的文字说明,加上证明思路图,主线框图等)。4、举例——用对偶单纯形法求解LP:化为标准型→将三个等式约束两边分别乘以-1,然后列表求解如下:-3/-1-9/-1---------比值-3-90000-Z-1-1100-1-4010-1-7001-2-3-3y3y4y5000-3-9000y1y2y3y4y5cjyjbXBCB----6/-3-3/-1------比值0-6-3006-Z11-1000-3-1100-6-1012-1-1y1y4y5-300-3-9000y1y2y3y4y5cjyj

6、bXBCB00-1-208-Z10-4/31/30011/3-1/30001-215/31/31y1y2y5-3-90-3-9000y1y2y3y4y5cjyjbXBCB最优解是Y*=(5/3,1/3,0,0,1)T,目标函数最优值为Wmin=-Zmax=8思考题:能否不要化为标准型,直接按极小化问题用单纯形表格迭代求解?(结合课后小组讨论4一并思考研究)第五次作业(对偶问题、对偶单纯形法)P68:1(3,4个小题);P69:3(1),(4);

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。