欢迎来到天天文库
浏览记录
ID:39412341
大小:420.56 KB
页数:7页
时间:2019-07-02
《Predicting load harmonics in three phase systems using neura》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、PredictingLoadHarmonicsinThreePhaseSystemsUsingNeuralNetworksJoyMazumdar,R.G.HarleyandF.LambertGaneshK.VenayagamoorthySchoolofElectricalandComputerEngineeringDepartmentofElectricalandComputerEngineeringGeorgiaInstituteofTechnologyUniversityofMissouri-R
2、ollaAtlanta,GA30332-0250,USARolla,MO65409-0249,USAEmail:joymazum@ece.gatech.eduEmail:gkumar@ieee.orgAbstract-Thispaperproposesaartificialneuralnetworkmethod[3,4],harmonicimpedancemeasurement[5],andin(ANN)basedmethodfortheproblemofmeasuringtheactualrece
3、ntyearsartificialneuralnetworks(ANN)[6-9]toharmoniccurrentinjectedintoapowersystemnetworkbymeasuretheharmoniccontentintheloadcurrent,ortothreephasenonlinearloadswithoutdisconnectinganyloadspredictit,butmostofthemassumearadialfeedersupplyingfromthenetwo
4、rk.TheANNdirectlyestimatesoridentifiestheasingleloadthroughaknownfeederimpedance,ornonlinearadmittance(orimpedance)oftheloadbyusingthemultipleloadsconnectedtoaPCCwhichhasasinusoidalmeasuredvaluesofvoltageandcurrentwaveforms.Theoutputvoltageandwithzeroi
5、mpedanceinthesupplyfeeder.ofthisANNisawaveformofthecurrentthattheloadwouldhaveinjectedintothenetworkiftheloadhadbeensuppliedThispaperproposesanovelmethodbasedonArtificialfromasinusoidalvoltagesourceandisthereforeadirectNeuralNetworks(ANN)todeterminethe
6、trueharmonicmeasureofloadharmonics.currentofanonlinearloadinathreephasepowersystem.I.INTRODUCTIONII.LOADMODELINGUSINGNEURALNETWORKSTheincreaseduseofnonlineardevicesinindustryhasArtificialNeuralNetworkshaveprovidedanalternativeresultedindirectincreaseof
7、harmonicdistortioninthemodelingapproachforpowersystemapplications.Theindustrialpowersysteminrecentyears.Allloadsservicedmulti-layerperceptronnetwork(MLPN)isoneofthemostbytheutilityaredesignedtooperateat60Hz.Howeverpopulartopologiesinusetoday.Thisnetwor
8、kconsistsofanonlinearloadsdemandnonsinusoidalcurrentandthesesetofinputneurons,outputneuronsandoneormorehiddencurrentshavedetrimentaleffectonthepowersystem.Asanlayersofintermediateneurons.Dataflowsintothenetworkexample,Fig.1showsatypical
此文档下载收益归作者所有