Predicting load harmonics in three phase systems using neura

Predicting load harmonics in three phase systems using neura

ID:39412341

大小:420.56 KB

页数:7页

时间:2019-07-02

Predicting load harmonics in three phase systems using neura_第1页
Predicting load harmonics in three phase systems using neura_第2页
Predicting load harmonics in three phase systems using neura_第3页
Predicting load harmonics in three phase systems using neura_第4页
Predicting load harmonics in three phase systems using neura_第5页
资源描述:

《Predicting load harmonics in three phase systems using neura》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、PredictingLoadHarmonicsinThreePhaseSystemsUsingNeuralNetworksJoyMazumdar,R.G.HarleyandF.LambertGaneshK.VenayagamoorthySchoolofElectricalandComputerEngineeringDepartmentofElectricalandComputerEngineeringGeorgiaInstituteofTechnologyUniversityofMissouri-R

2、ollaAtlanta,GA30332-0250,USARolla,MO65409-0249,USAEmail:joymazum@ece.gatech.eduEmail:gkumar@ieee.orgAbstract-Thispaperproposesaartificialneuralnetworkmethod[3,4],harmonicimpedancemeasurement[5],andin(ANN)basedmethodfortheproblemofmeasuringtheactualrece

3、ntyearsartificialneuralnetworks(ANN)[6-9]toharmoniccurrentinjectedintoapowersystemnetworkbymeasuretheharmoniccontentintheloadcurrent,ortothreephasenonlinearloadswithoutdisconnectinganyloadspredictit,butmostofthemassumearadialfeedersupplyingfromthenetwo

4、rk.TheANNdirectlyestimatesoridentifiestheasingleloadthroughaknownfeederimpedance,ornonlinearadmittance(orimpedance)oftheloadbyusingthemultipleloadsconnectedtoaPCCwhichhasasinusoidalmeasuredvaluesofvoltageandcurrentwaveforms.Theoutputvoltageandwithzeroi

5、mpedanceinthesupplyfeeder.ofthisANNisawaveformofthecurrentthattheloadwouldhaveinjectedintothenetworkiftheloadhadbeensuppliedThispaperproposesanovelmethodbasedonArtificialfromasinusoidalvoltagesourceandisthereforeadirectNeuralNetworks(ANN)todeterminethe

6、trueharmonicmeasureofloadharmonics.currentofanonlinearloadinathreephasepowersystem.I.INTRODUCTIONII.LOADMODELINGUSINGNEURALNETWORKSTheincreaseduseofnonlineardevicesinindustryhasArtificialNeuralNetworkshaveprovidedanalternativeresultedindirectincreaseof

7、harmonicdistortioninthemodelingapproachforpowersystemapplications.Theindustrialpowersysteminrecentyears.Allloadsservicedmulti-layerperceptronnetwork(MLPN)isoneofthemostbytheutilityaredesignedtooperateat60Hz.Howeverpopulartopologiesinusetoday.Thisnetwor

8、kconsistsofanonlinearloadsdemandnonsinusoidalcurrentandthesesetofinputneurons,outputneuronsandoneormorehiddencurrentshavedetrimentaleffectonthepowersystem.Asanlayersofintermediateneurons.Dataflowsintothenetworkexample,Fig.1showsatypical

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。