欢迎来到天天文库
浏览记录
ID:39410541
大小:625.72 KB
页数:97页
时间:2019-07-02
《NicholasSheridanHonoursThesis英文版》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、TheUniversityofMelbourne,DepartmentofMathematicsandStatisticsHamilton’sRicciFlowNicholasSheridanSupervisor:AssociateProfessorCraigHodgsonSecondReader:ProfessorHyamRubinsteinHonoursThesis,November2006.AbstractTheaimofthisprojectistointroducethebasicsofHamilton’sRicciFlow.TheRicciflowisapdeforevolv
2、ingthemetrictensorinaRiemannianmanifoldtomakeit“rounder”,inthehopethatonemaydrawtopologicalconclusionsfromtheexistenceofsuch“round”metrics.Indeed,theRicciflowhasrecentlybeenusedtoprovetwoverydeeptheoremsintopology,namelytheGeometrizationandPoincar´eConjectures.Webeginwithabriefsurveyofthedifferent
3、ialgeometrythatisneededintheRicciflow,thenproceedtointroduceitsbasicpropertiesandthebasictechniquesusedtounderstandit,forexample,provingexistenceanduniquenessandboundsonderivativesofcurvatureundertheRicciflowusingthemaximumprinciple.Weusetheseresultstoprovethe“original”Ricciflowtheorem–the1982theor
4、emofRichardHamiltonthatclosed3-manifoldswhichadmitmetricsofstrictlypositiveRiccicurvaturearediffeomorphictoquotientsoftheround3-spherebyfinitegroupsofisometriesactingfreely.WeconcludewithaqualitativediscussionoftheideasbehindtheproofoftheGeometrizationConjectureusingtheRicciflow.Mostoftheprojectisb
5、asedonthebookbyChowandKnopf[6],thenotesbyPeterTopping[28](whichhaverecentlybeenmadeintoabook,see[29]),thepapersofRichardHamilton(inparticular[9])andthelecturecourseonGeometricEvolutionEquationspresentedbyBenAndrewsatthe2006ICE-EMGraduateSchoolheldattheUniversityofQueensland.Wehavereformulatedand
6、expandedtheargumentscontainedinthesereferencesinsomeplaces.Inparticular,theproofofTheorem7.19isoriginal,basedonasuggestionbyGerhardHuisken.WealsodivergefromtheexistingreferencesbyemphasisingtheanalogybetweenthetechniquesappliedtotheRicciflowandthoseappliedtothecurve-shorteningflow,whichwefeelhelps
7、clarifytheimportantideasbehindthetechnicaldetailsoftheRicciflow.Chapter6isbasedon[6,Chap.6,7],butwehavesignificantlyreformulatedthematerialandelaboratedontheproofs.WefeelthatourorganizationiseasiertofollowthanChowandKnopf’sboo
此文档下载收益归作者所有