effective extraction of gabor features for adaptive mammogram retrieval

effective extraction of gabor features for adaptive mammogram retrieval

ID:39395596

大小:900.53 KB

页数:4页

时间:2019-07-02

effective extraction of gabor features for adaptive mammogram retrieval_第1页
effective extraction of gabor features for adaptive mammogram retrieval_第2页
effective extraction of gabor features for adaptive mammogram retrieval_第3页
effective extraction of gabor features for adaptive mammogram retrieval_第4页
资源描述:

《effective extraction of gabor features for adaptive mammogram retrieval》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、EFFECTIVEEXTRACTIONOFGABORFEATURESFORADAPTIVEMAMMOGRAMRETRIEVALChia-HungWei,YueLi,Chang-TsunLiDepartmentofComputerScience,UniversityofWarwick,UK{rogerwei,yxl,ctli}@dcs.warwick.ac.ukABSTRACT1)AGabor-filteringmethodfordescribingtexturalfeaturesisproposed,whichappliesthephysicalpropertiesofaprob-

2、Breastcancerisoneofthemostcommondiseasesamongabilitywavetoprobabilitytransformation,andcomputeswomen.Content-basedmammogramretrievalhasbeenpro-texturalfeatures;posedtoaidvariousmedicalprocedures.Todevelopacon-2)Anadaptivestrategyforfeatureandfilterselection,andtent-basedmammogramretrievalsyste

3、m,texturalfeaturefeatureweighting,isproposed,whichutilizesauser’srele-extractionisoneofthecrucialrequirements.Thisstudyvancefeedbacktoreducetheredundancyintherepresenta-proposesaGaborfilteringmethodfortheextractionoftex-tionandincorporatetheuser’sinformationneedsinimageturalfeatures,whichfirst

4、lyperformsGaborfilteringontheretrieval;underlyingimage,appliesthephysicalpropertiesofaprob-3)Integratingbothschemes(theGabor-filteringmethodandabilitywavetoprobabilitytransformationandthencom-theadaptivestrategy)forcontent-basedmammogramre-putesfeaturestodescribethetexturalpatternofthemam-trie

5、valissuggested,asshowninFigure1.mogram.Thisstudyalsoproposesanadaptivestrategyforfeatureselection,filterselectionandfeatureweighting,GaborProbabilityFeaturewhichutilizesauser’srelevancefeedbacktoreducethere-FilteringTransformationCalculationdundancyintherepresentationandincorporatestheuser’sFe

6、atureExtractioninformationneedsinimageretrieval.Experimentalresultsshowthathypothesistestscaneffectivelyfinddiscriminatedfeaturesandthisretrievalsystemcanimproveitsperform-Featureancethroughjustafewroundsofrelevancefeedback.Mammo-FeaturegramsExtractionImageDatabase(with1(Filter.FeatureDescript

7、ors)..FeatureOff-lineFeatureExtraction1,…,FilterOn-lineImageRetrievalm1.INTRODUCTION(FilterQueryFeaturenExampleExtractionSimilarity)Measure1,…,FilterMammographyhasproventobeareliablemethodforde-(Euclideantectingbreastcancersoanenormousn

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。