资源描述:
《Consensus of Multi-Agent Systems With General Linear and Lipschitz Nonlinear Dynamics Using Distributed Adaptive Protocols》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、1786IEEETRANSACTIONSONAUTOMATICCONTROL,VOL.58,NO.7,JULY2013TechnicalNotesandCorrespondenceConsensusofMulti-AgentSystemsWithGeneraltotherecentsurveys[1],[2]forarelativelycompletecoverageoftheLinearandLipschitzNonlinearDynamicsliteratureonconsensus.UsingDistributed
2、AdaptiveProtocolsThistechnicalbriefconsidersthedistributedconsensusproblemsformulti-agentsystemswithgenerallinearandLipschitznonlinearZhongkuiLi,Member,IEEE,WeiRen,Member,IEEE,dynamics.Consensusofmulti-agentsystemswithgenerallinearXiangdongLiu,andMengyinFudynamic
3、swaspreviouslystudiedin[13]–[17].Inparticular,differentstaticanddynamicconsensusprotocolsaredesignedin[13]–[15],requiringthesmallestnonzeroeigenvalueoftheLaplacianmatrixassociatedwiththecommunicationgraphtobeknownbyeachAbstract—Thistechnicalbriefconsidersthedistr
4、ibutedconsensusprob-lemsformulti-agentsystemswithgenerallinearandLipschitznonlinearagenttodeterminetheboundforthecouplingweight.However,thedynamics.Distributedrelative-stateconsensusprotocolswithanadaptiveLaplacianmatrixdependsontheentirecommunicationgraphandisla
5、wforadjustingthecouplingweightsbetweenneighboringagentsarede-henceglobalinformation.Inotherwords,theseconsensusprotocolssignedforboththelinearandnonlinearcases,underwhichconsensusisin[13]–[15]cannotbecomputedandimplementedbyeachagentinareachedforallundirectedconn
6、ectedcommunicationgraphs.Extensionstofullydistributedfashion,i.e.,usingonlylocalinformationofitsownthecasewithaleader-followercommunicationgrapharefurtherstudied.Incontrasttotheexistingresultsintheliterature,theadaptiveconsensusandneighbors.Totacklethisproblem,we
7、proposehereadistributedprotocolsherecanbeimplementedbyeachagentinafullydistributedconsensusprotocolbasedontherelativestatescombinedwithanfashionwithoutusinganyglobalinformation.adaptivelawforadjustingthecouplingweightsbetweenneighboringIndexTerms—Adaptivelaw,cons
8、ensus,Lipschitznonlinearity,agents,whichispartlyinspiredbytheedge-basedadaptivestrategymulti-agentsystem.forthesynchronizationofcomplexnetworksin[18],[19].Thep