资源描述:
《实际问题和二次函数》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、实际问题与二次函数水柱形成形状跳运时人在空中经过的路径篮球在空中经过的路径跳水运动员在空中经过的路径何时获得最大利润?何时橙子总产量最大?养鸡场面积何时最大?同学们,下面就让我们一起去体会生活中的数学给我们带来的乐趣吧!某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?来到商场活动1(1)解:设涨价x元,所得利润为y元,由题意可得:y=(60+x-40)(300-10x)(0≤X≤30)某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每
2、涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?∵a<0,∴当定价为65元时,利润最大,最大利润为6250元.可以看出,这个函数的图像是一条抛物线的一部分,这条抛物线的顶点是函数图像的最高点,也就是说当x取顶点坐标的横坐标时,这个函数有最大值。由公式可以求出顶点的横坐标.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?在降价的情况下,最大利润是多少?请你参考(1)的过程得出答案。(2)
3、解:设降价x元,则每星期可多卖18x件,实际卖出(300+18x)件,每件利润为(60-x-40)元,因此,得利润∴定价为 元时,利润最大,最大利润为6050元做一做由(1)(2)的讨论及现在的销售情况,你知道应该如何定价能使利润最大了吗?答:当定价为65元时,利润最大,最大利润为6250元(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值。解这类题目的一般步骤来到操场活动2一场篮球赛中,小明跳起投篮,已知球出手时离地面高米,与篮圈中心的水平距离为8米,当球出手后水平距离为4米时到达最
4、大高度4米,设篮球运行的轨迹为抛物线,篮圈中心距离地面3米。问此球能否投中?3米8米4米4米8(4,4)如图,建立平面直角坐标系,点(4,4)是图中这段抛物线的顶点,因此可设这段抛物线对应的函数为:∵篮圈中心距离地面3米∴此球不能投中若假设出手的角度和力度都不变,则如何才能使此球命中?探究(1)跳得高一点(2)向前平移一点yx(4,4)(8,3)在出手角度和力度都不变的情况下,小明的出手高度为多少时能将篮球投入篮圈?0123456789yX(8,3)(5,4)(4,4)0123456789在出手角度、力度及高度都不变的情况下,则小明朝着篮球架再向前平移多少米后跳起投篮也能将篮球投入篮圈
5、?(7,3)●用抛物线的知识解决运动场上或者生活中的一些实际问题的一般步骤:建立直角坐标系二次函数问题求解找出实际问题的答案及时总生活是数学的源泉,探索是数学的生命线.寄语布置作业:1、预习2、课课通(第169页)实际问题与二次函数再见!何时窗户通过的光线最多某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有的黑线的长度和)为15m.当x等于多少时,窗户通过的光线最多(π取3)?此时,窗户的面积S是多少?xy抛物线形拱桥,当水面在时,拱顶离水面2m,水面宽度4m,水面下降1m,水面宽度增加多少?来到小桥旁抛物线形拱桥,当水面在时,拱顶离水面2m,水面宽
6、度4m,水面下降1m,水面宽度增加多少?xy0(2,-2)●(-2,-2)●解:设这条抛物线表示的二次函数为由抛物线经过点(2,-2),可得所以,这条抛物线的二次函数为:当水面下降1m时,水面的纵坐标为当时,所以,水面下降1m,水面的宽度为m∴水面的宽度增加了m来到小桥旁练习:如图是某公园一圆形喷水池,水流在各方向沿形状相同的抛物线落下,如果喷头所在处A(0,1.25),水流路线最高处B(1,2.25),则该抛物线的解析式为,如果不考虑其他因素,那么水池的半径至少要,米,才能使喷出的水流不致落到池外。.CxOA(0,1.25)B(1,2.25)y练习:如图是某公园一圆形喷水池,水流在各
7、方向沿形状相同的抛物线落下,如果喷头所在处A(0,1.25),水流路线最高处B(1,2.25),则该抛物线的解析式为,如果不考虑其他因素,那么水池的半径至少要,米,才能使喷出的水流不致落到池外。y=-(x-1)2+2.25(0≤x≤2.5)2.5.CxOA(0,1.25)B(1,2.25)y2、你知道吗?平时我们在跳大绳时,绳甩到最高处的形状可近似地视为抛物线,如图所示,正在甩绳的甲、乙两名学生拿绳的手间距为4米,距地面均为1米,学生丙、丁分别