椭圆的经典练习及答案

椭圆的经典练习及答案

ID:39343040

大小:2.05 MB

页数:30页

时间:2019-07-01

椭圆的经典练习及答案_第1页
椭圆的经典练习及答案_第2页
椭圆的经典练习及答案_第3页
椭圆的经典练习及答案_第4页
椭圆的经典练习及答案_第5页
资源描述:

《椭圆的经典练习及答案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、椭圆几何性质典型练习例1椭圆的一个顶点为,其长轴长是短轴长的2倍,求椭圆的标准方程.例2一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.例3已知中心在原点,焦点在轴上的椭圆与直线交于、两点,为中点,的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.例4椭圆上不同三点,,与焦点的距离成等差数列.(1)求证;(2)若线段的垂直平分线与轴的交点为,求直线的斜率.例5已知椭圆,、为两焦点,问能否在椭圆上找一点,使到左准线的距离是与的等比中项?若存在,则求出点的坐标;若不存在,请说明理由.例6已知椭圆,求过点且被平分的弦所在

2、的直线方程.例7求适合条件的椭圆的标准方程.例8椭圆的右焦点为,过点,点在椭圆上,当为最小值时,求点的坐标.例9求椭圆上的点到直线的距离的最小值.例10设椭圆的中心是坐标原点,长轴在轴上,离心率,已知点到这个椭圆上的点的最远距离是,求这个椭圆的方程,并求椭圆上的点的距离等于的点的坐标.例11设,,,求的最大值和最小值.30例12已知椭圆,、是其长轴的两个端点.例13已知椭圆的离心率,求的值.例14已知椭圆上一点到右焦点的距离为,求到左准线的距离.例15设椭圆(为参数)上一点与轴正向所成角,求例16设是离心率为的椭圆上的一

3、点,到左焦点和右焦点的距离分别为和,求证:,.例17 已知椭圆内有一点,、分别是椭圆的左、右焦点,点例18 (1)写出椭圆的参数方程;(2)求椭圆内接矩形的最大面积.例19已知,是椭圆的两个焦点,是椭圆上一点,且.(1)求椭圆离心率的取值范围;(2)求证的面积与椭圆短轴长有关.例20 椭圆与轴正向交于点,若这个椭圆上总存在点,使(为坐标原点),求其离心率的取值范围.30椭圆简单几何性质答案例1椭圆的一个顶点为,其长轴长是短轴长的2倍,求椭圆的标准方程.分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当为长轴端点时

4、,,,椭圆的标准方程为:;(2)当为短轴端点时,,,椭圆的标准方程为:;说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.典型例题二例2一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.解:∴,∴.说明:求椭圆的离心率问题,通常有两种处理方法,一是求,求,再求比.二是列含和的齐次方程,再化含的方程,解方程即可.典型例题三例3已知中心在原点,焦点在轴上的椭圆与直线交于、两点,为中点,的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为,由,得

5、,30∴,,,∴,∴为所求.说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.典型例题四例4椭圆上不同三点,,与焦点的距离成等差数列.(1)求证;(2)若线段的垂直平分线与轴的交点为,求直线的斜率.证明:(1)由椭圆方程知,,.由圆锥曲线的统一定义知:,∴.同理.∵,且,∴,即.(2)因为线段的中点为,所以它的垂直平分线方程为.又∵点在轴上,设其坐标为,代入上式,得30又∵点,都在椭圆上,∴∴.将此式代入①,并利用的结论得∴.典型例题五例5

6、已知椭圆,、为两焦点,问能否在椭圆上找一点,使到左准线的距离是与的等比中项?若存在,则求出点的坐标;若不存在,请说明理由.解:假设存在,设,由已知条件得,,∴,.∵左准线的方程是,∴.又由焦半径公式知:,.∵,∴.整理得.解之得或.①30另一方面.②则①与②矛盾,所以满足条件的点不存在.说明:(1)利用焦半径公式解常可简化解题过程.(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.(3)本例也可设存在,推出矛盾结论(读者自己完成).典型例题六例

7、6已知椭圆,求过点且被平分的弦所在的直线方程.分析一:已知一点求直线,关键是求斜率,故设斜率为,利用条件求.解法一:设所求直线的斜率为,则直线方程为.代入椭圆方程,并整理得.由韦达定理得.∵是弦中点,∴.故得.所以所求直线方程为.分析二:设弦两端坐标为、,列关于、、、的方程组,从而求斜率:.解法二:设过的直线与椭圆交于、,则由题意得①-②得.⑤30将③、④代入⑤得,即直线的斜率为.所求直线方程为.说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点

8、差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.典型例题七例7求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点;(2)在轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.分析:当方程有两种形式时,应分别

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。