理解载波恢复

理解载波恢复

ID:39274849

大小:603.43 KB

页数:10页

时间:2019-06-29

理解载波恢复_第1页
理解载波恢复_第2页
理解载波恢复_第3页
理解载波恢复_第4页
理解载波恢复_第5页
资源描述:

《理解载波恢复》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、理解载波恢复简介在数字通信系统中,信息可以通过载波基本特性的变化来进行传输。这些特性,如相位、频率、和幅度,在发射端被修改并且必须在接收端被检测到。因此,对于接收端来说,恢复载波的频率、相位、和符号时序是绝对必需的。这一过程就被称作载波恢复并且可以通过各种技术得以实现。在本演示(或文档)中,我们将探讨频率偏移的影响以及载波恢复中存在的通道噪声。ASCII码文本的QAM调制(带噪声)幅度瞬时正弦波状态:M(t)<Φ(t)载波恢复基础知识In-ClassDemos课堂演示RFAcademicBundle:UnderstandingCarrierRecov

2、ery2RF院校资源包:理解载波复原一个QAM发送端使用特定的相位和幅度来调制载波信号,而另一方面,如果接收器能够确定原始信号的相位和频率,那它就能准确地检测到这个信号。因此,两者之间的同步是必需的。在理想情况下,发送端和接收端将会完美地同步工作。换句话说,两者将会以同样的方式解释信号的相位和频率。然而,实际的硬件并不是完美的,而且即使利用某种纠错机制,接收端也不可能精确地锁定到与发送端完全相同的相位和频率。为了弥补这些不尽完美的特性,采用锁相环或PLL来匹配接收端和发送端之间的频率(1)。利用星座图,我们可以表示出每个符号的幅度和相位。此外,每个符

3、号覆盖在另一个符号之上是为了说明与我们所能恢复载波的相位和幅度之间的一致性。理想情况下,当接收端的PLL能够恢复载波,那么每个符号就会在星座图上清楚地分布。然而,当载波由于通道噪声或频率误差的原因而无法恢复时,星座图也能表示来了。在右边,我们示出了一幅符号出现在正确幅度处,但其相位正持续变化的星座图。因为:Frequency=dΘ/dt频率=dΘ/dt所以,当星座图的相位持续变化时,我们能够确定频率估计是错误的。在这个特定的实例中,我们已经通过在系统中引入足够的噪声来仿真频率误差,从而得以干扰PLL,甚至将噪声去除之后,PLL仍然可能无法锁定正确的频

4、率。载波恢复步骤解决这个载波恢复问题的方法有两个部分,它们可以粗略地分为以下两个部分:频率恢复和符号时序(相位)恢复。第一个部分需要频率估计以便于接收端精确地锁定至发射端频率,第二个部分,符号时序恢复需要接收端精确地锁定发射端相位。符号时序恢复使得接收端通过精确In-ClassDemos课堂演示RFAcademicBundle:UnderstandingCarrierRecovery3RF院校资源包:理解载波复原地锁定发射端的相位来准确地恢复所生成的每一个符号。此外,由于存在多种方式来实现符合时序恢复,所以它更加值得注意。频率估计在理想的通信系统中,

5、发送端和接收端将工作在完全相同的频率上。然而,在实际系统中,发送端和接收端都十分容易受到误差的影响。因此,两端的频率必须同步,且通常在接收端予以实现并以频率估计作为同步的开始。FFT方式最简单的频率估计方式就是对进入的信号进行FFT变换并确定波峰。这种方式十分简单而且可以使用常见的算法予以实现。但是,FFT方式具有一个很大的缺点,即它需要很长的处理时间。因此,它很少使用在商业应用中。两阶段算法方式第二种频率估计方法就是使用两阶段频率估计算法。第一阶段仅仅需要粗略地测量期望频率与接收端所观察频率之间的频率差值,第二阶段则通过运用额外的算法来提供一个更为

6、精确的估计。LabVIEW调制工具包中使用了这种方式,接下来将会更加深入地予以叙述。粗频率偏移计算粗频率补偿的实现与调制方式无关。频率估计过程中这一步骤的目的在于通过直接操作于复包络输入波形之上来消除频率偏移。在数学上,我们可以将复包络调制波形用如下等式表示:而且,当以特定的采样速率Fs进行采样时,我们可以进一步地表示如下:这里,Өv(n)代表相位误差,而相位误差产生频率偏移,因此,既然相位误差造成频率中的变化,我们就可以将频率误差表示如下:In-ClassDemos课堂演示RFAcademicBundle:UnderstandingCarrierR

7、ecovery4RF院校资源包:理解载波复原同样,Fs代表采样速率。因而,为了修正这个粗频率偏移,我们必须将∆ƒ应用在初始的复包络波形。为了实现这个目标,我们可以使用下述等式表示复波形:细频率偏移补偿尽管步骤一样,但细频率偏移补偿中的数学公式更为复杂一些。同样,我们可以使用如下的等式表示复包络调制波形:此外,当以符号速率R进行采样时,等式可以进一步展开如下式所示:在这个等式中,Өv(n-1)表示了前一个符号的绝对相位。此时再应用最大相似度检测并可以用下式表示:由此,我们可以用下式表示复包络波形:同样,Fs表示采样速率,我们可以用下式表示频率偏移:因此

8、可以用下式表示细频率偏移:相位估计一旦确定了系统的频率偏移,就必须精确地估计载波相位以进行正确的符号恢复。通

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。