The Laplacian on Riemannian Manifold英文学习材料

The Laplacian on Riemannian Manifold英文学习材料

ID:39256961

大小:215.50 KB

页数:30页

时间:2019-06-28

The Laplacian on Riemannian Manifold英文学习材料_第1页
The Laplacian on Riemannian Manifold英文学习材料_第2页
The Laplacian on Riemannian Manifold英文学习材料_第3页
The Laplacian on Riemannian Manifold英文学习材料_第4页
The Laplacian on Riemannian Manifold英文学习材料_第5页
资源描述:

《The Laplacian on Riemannian Manifold英文学习材料》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、LaplacianonRiemannianmanifoldsBrunoColbois1erjuin2010Preamble:Thisareinformalnotesofaseriesof4talksIgaveinCarthage,asintroductiontotheDidoConference,May24-May29,2010.Thegoalistopresentdi erentaspectsoftheclassicalquestion"HowtounderstandthespectrumoftheLaplac

2、ianonaRiemannianmanifoldthankstothegeometryofthemanifold?"The rstlecturepresentssomegeneralitiesandsomegeneralresults,thesecondlectureconcernsthehyperbolicmanifolds,thethirdlecturegivesestimatesontheconformalclass,andthelastpresentsomeestimatesforsubmanifolds

3、.Thelectureendswithsomeopenquestions.1Introduction,basicresultsandexamplesLet(M;g)beasmooth,connectedandC1Riemannianmanifoldwithboundary@M.TheboundaryisaRiemannianmanifoldwithinducedmetricgj@M.Wesuppose@Mtobesmooth.WerefertothebookofSakai[Sa]forageneralintrod

4、uctiontoRiemannianGeometryandtoBerard[Be]andChavel[Ch1]foranintroductiontospectraltheory.Forafunctionf2C2(M),wede netheLaplaceoperatororLaplacianbyf=df=divgradfwheredistheexteriorderivativeandtheadjointofdwithrespecttotheusualL2-innerproductZ(f;h)=fhdVMw

5、heredVdenotesthevolumeformon(M;g).Inlocalcoordinatesfxig,theLaplacianreads1X@p@pijf=(gdet(g)f):det(g)@xj@xii;j1Inparticular,intheEuclideancase,werecovertheusualexpressionX@@f=f:@xj@xjjLetf2C2(M)andh2C1(M)suchthathdfhascompactsupportinM.ThenwehaveGreen'sFo

6、rmulaZZdf(f;h)=dVhdAM@Mdndfwheredenotesthederivativeoffinthedirectionoftheoutwardunitnormalvectordn eldnon@ManddAthevolumeformon@M.dfInparticular,ifoneofthefollowingconditions@M=;,hj@M=0or(dn)j@M=0issatis ed,thenwehavetherelation(f;h)=(df;dh):Inthes

7、equel,wewillstudythefollowingeigenvalueproblemswhenMiscompact:{ClosedProblem:f=finM;@M=;;{DirichletProblemf=finM;fj@M=0;{NeumannProblem:dff=finM;()j@M=0:dnWehavethefollowingstandardresultaboutthespectrum,see[Be]p.53.Theorem1.LetMbeacompactmanifoldwithbo

8、undary@M(eventuallyempty),andconsideroneoftheabovementionedeigenvalueproblems.Then:1.Thesetofeigenvalueconsistsofanin nitesequence0<123:::!1,where0isnotaneigenvalueintheDirichletpro

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。