用GARCH模型预测股票指数波动率

用GARCH模型预测股票指数波动率

ID:39242193

大小:410.00 KB

页数:19页

时间:2019-06-28

用GARCH模型预测股票指数波动率_第1页
用GARCH模型预测股票指数波动率_第2页
用GARCH模型预测股票指数波动率_第3页
用GARCH模型预测股票指数波动率_第4页
用GARCH模型预测股票指数波动率_第5页
资源描述:

《用GARCH模型预测股票指数波动率》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、实用文档用GARCH模型预测股票指数波动率目录Abstract21.引言32.数据63.方法73.1.模型的条件平均73.2.模型的条件方差83.3预测方法93.4业绩预测评价94.实证结果和讨论125.结论16References18标准文案实用文档AbstractThispaperisdesignedtomakeacomparisonbetweenthedailyconditionalvariancethroughsevenGRACHmodels.Throughthiscomparison,totestwhet

2、heradvancedGARCHmodelsareoutperformingthestandardGARCHmodelsinpredictingthevarianceofstockindex.Thedatabaseofthispaperisthestatisticsof21stockindicesaroundtheworldfrom1Januaryto30November2013.Byforecastingone–step-aheadconditionalvariancewithindifferentmodels,

3、thencomparetheresultswithinmultiplestatisticaltests.Throughoutthetests,itisfoundthatthestandardGARCHmodeloutperformsthemoreadvancedGARCHmodels,andrecommendsthebestone-step-aheadmethodtoforecastofthedailyconditionalvariance.Theresultsaretostrengthentheperforman

4、ceevaluationcriteriachoices;differentiatethemarketconditionandthedata-snoopingbias.Thisstudyimpactthedata-snoopingproblembyusinganextensivecross-sectionaldataestablishandtheadvancedpredictiveabilitytest.Furthermore,itincludesa13years’periodsampleset,whichisrel

5、ativelylongfortheunpredictabilityforecastingstudies.ItispartoftheearliestattemptstoinspecttheimpactofthemarketconditionontheforecastingperformanceofGARCHmodels.ThisstudyallowsforagreatchoiceofparameterizationintheGARCHmodels,anditusesabroadrangeofperformanceev

6、aluationcriteria,includingstatisticallossfunctionandtheMince-Zarnowitzregressions.Thus,theresultsaremorerobustanddiffuselyapplicableascomparedtotheearlieststudies.KEYWORDS:GARCHmodels;volatility,conditionalvariance,forecast,stockindices.标准文案实用文档1.引言波动性预测可以运用到投

7、资组合选择,期权定价,风险管理和以波动性为基础的交易策略。GARCH模型族被广泛的运用在模拟预测金融资产的波动性。另一个普遍运用的模式为简单的时间序列模型,例如指数加权移动平均(EWMA)模型和复杂随机波动性模型(PoonandGranger,2003)。对不同金融市场波动性的预测,Ederington在2005年发现GARCH模型通常的表现优异于EWMA模型。同样的,关于随机过程的波动率建模,有强有力的证据证明随机波动模型的样品性能堪比GARCH模型(FlemingandKirby,2003).标准GARCH模型

8、于1986年被Bollerslev提出后,为了规范条件方差,更多复杂的GRACH模型参数被提出。这些先进的GARCH模型试图去更好的捕捉经验主义观察到条件方差的过程。例如,EGARC模型,GJR模型,TGARCH模型和NGARCH模型获得的负返回流的非对称性效应。更为广义的参数化,像APARCH模型和HGARCH模型,包含大量较为简单的GARCH模型(Zak

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。