A perturbation method for multiple sign-changing solutions

A perturbation method for multiple sign-changing solutions

ID:39209123

大小:228.96 KB

页数:12页

时间:2019-06-27

A perturbation method for multiple sign-changing solutions_第1页
A perturbation method for multiple sign-changing solutions_第2页
A perturbation method for multiple sign-changing solutions_第3页
A perturbation method for multiple sign-changing solutions_第4页
A perturbation method for multiple sign-changing solutions_第5页
资源描述:

《A perturbation method for multiple sign-changing solutions》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、Calc.Var.(2010)37:8798DOI10.1007/s00526-009-0253-2CalculusofVariationsAperturbationmethodformultiplesign-changingsolutionsN.Hirano·W.ZouReceived:15December2008/Accepted:5May2009/Publishedonline:10June2009©Springer-Verlag2009AbstractWedevelopaperturbationmethodfornon-evenfunctionalswhichproducesp

2、rescribednumberofsign-changingsolutions.TheabstracttheoryisappliedtotheperturbedsubcriticalellipticequationandtheperturbedBrézisNirenbergcriticalexponentproblem.MathematicsSubjectClassification(2000)35J50·58E051IntroductionRecallthefollowingproblem:−u=

3、u

4、p−2u+f(x,u),u∈H1(),(1.1)0whereisabounde

5、dsmoothdomainofRN(N≥3),2

6、msisoftenreferredtoasperturbationfromsymmetryproblemsandthesymmetryofthecorrespondingfunctionalisbrokencompletely.AlongstandingopenCommunicatedbyA.Malchiodi.N.HiranowassupportedinpartbyYokohamaIndus.Soc.andW.ZouwassupportedbyNSFC(10871109)andYokohamaIndus.Soc.N.HiranoGraduateSchoolofEnvironmenta

7、ndInformationScience,YokohamaNationalUniversity,Tokiwadai,Yokohama,Japane-mail:hirano@math.sci.ynu.ac.jpW.Zou(B)DepartmentofMathematicalSciences,TsinghuaUniversity,100084Beijing,Chinae-mail:wzou@math.tsinghua.edu.cn12388N.Hirano,W.Zouquestionwhicheventodayisnotadequatelysettledis:whetherthesymme

8、tryofthefunc-tionaliscrucialfortheexistenceofinfinitelymanycriticalpoints(cf.Rabinowitz[23,24]andStruwe[29,p.118]).Severalpartialanswershadbeenobtainedinthepast30years.Letussketchthehistory.Thespecialcase−u=

9、u

10、p−2u+f(x),u∈H1(),(1.2)0wasfirststudiedbyBahriandBerestycki[3]Struwe[28]independently.I

11、nBahri[2],theauthorconsidered(1.2)andprovedthatthereisanopendensesetoffinW−1,2()suchthat(1.2)hasinfinitelymanysolutionsifp<2N/(N−2).InRabinowitz[23,24],theauthorconsideredthegeneralproblem−u=g(x,u)+f(x,u),u∈H1(),(1.3)0wher

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。