资源描述:
《A perturbation method for multiple sign-changing solutions》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、Calc.Var.(2010)37:8798DOI10.1007/s00526-009-0253-2CalculusofVariationsAperturbationmethodformultiplesign-changingsolutionsN.Hirano·W.ZouReceived:15December2008/Accepted:5May2009/Publishedonline:10June2009©Springer-Verlag2009AbstractWedevelopaperturbationmethodfornon-evenfunctionalswhichproducesp
2、rescribednumberofsign-changingsolutions.TheabstracttheoryisappliedtotheperturbedsubcriticalellipticequationandtheperturbedBrézisNirenbergcriticalexponentproblem.MathematicsSubjectClassification(2000)35J50·58E051IntroductionRecallthefollowingproblem:−u=
3、u
4、p−2u+f(x,u),u∈H1(),(1.1)0whereisabounde
5、dsmoothdomainofRN(N≥3),2
6、msisoftenreferredtoasperturbationfromsymmetryproblemsandthesymmetryofthecorrespondingfunctionalisbrokencompletely.AlongstandingopenCommunicatedbyA.Malchiodi.N.HiranowassupportedinpartbyYokohamaIndus.Soc.andW.ZouwassupportedbyNSFC(10871109)andYokohamaIndus.Soc.N.HiranoGraduateSchoolofEnvironmenta
7、ndInformationScience,YokohamaNationalUniversity,Tokiwadai,Yokohama,Japane-mail:hirano@math.sci.ynu.ac.jpW.Zou(B)DepartmentofMathematicalSciences,TsinghuaUniversity,100084Beijing,Chinae-mail:wzou@math.tsinghua.edu.cn12388N.Hirano,W.Zouquestionwhicheventodayisnotadequatelysettledis:whetherthesymme
8、tryofthefunc-tionaliscrucialfortheexistenceofinfinitelymanycriticalpoints(cf.Rabinowitz[23,24]andStruwe[29,p.118]).Severalpartialanswershadbeenobtainedinthepast30years.Letussketchthehistory.Thespecialcase−u=
9、u
10、p−2u+f(x),u∈H1(),(1.2)0wasfirststudiedbyBahriandBerestycki[3]Struwe[28]independently.I
11、nBahri[2],theauthorconsidered(1.2)andprovedthatthereisanopendensesetoffinW−1,2()suchthat(1.2)hasinfinitelymanysolutionsifp<2N/(N−2).InRabinowitz[23,24],theauthorconsideredthegeneralproblem−u=g(x,u)+f(x,u),u∈H1(),(1.3)0wher