欢迎来到天天文库
浏览记录
ID:39154916
大小:224.01 KB
页数:6页
时间:2019-06-25
《中考数学压轴专题___翻折类》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、中考数学压轴专题翻折类1、如图10,将一个边长分别为4、8的长方形纸片ABCD折叠,使C点与A点重合,则折痕EF的长是_______.DFCFADEBCABE图11图102、如图11,□ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为_______.3、如图,在直角坐标系中,将矩形OABC沿OB对折,使点A落在点A1处,已知OA=,AB=1,则点A1的坐标是()3333313A.(,)B.(,3)C.(,)D.(,)2222222F4、(06临汾)如图
2、,将矩形纸片ABCD沿AE向上折叠,使点B落在DC边上的F点处.若DC△AFD的周长为9,△ECF的周长为3,则矩形ABCD的周长为________.EAB/A5、(2010上海金山)如图2,在△ABC中,AD是BC上的中线,BC=4,∠ADC=30°,C把△ADC沿AD所在直线翻折后点C落在点C′的位置,那么点D到直线BC′的距离是.BCD图24、(08十堰)如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.E(1)求证:ΔABF≌ΔEDF;(2)若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连F接DM
3、,试判断四边形BMDF的形状,并说明理由.AD解:⑴证明:由折叠可知,CDED,EC.⋯⋯1分在矩形ABCD中,ABCD,AC,∴ABED,AE.∵∠AFB=∠EFD,BCM∴△AFB≌△EFD.⋯⋯⋯⋯⋯⋯⋯⋯4分第22题图⑵四边形BMDF是菱形.⋯⋯⋯⋯⋯⋯⋯⋯⋯5分理由:由折叠可知:BF=BM,DF=DM.⋯⋯⋯⋯6分由⑴知△AFB≌△EFD,∴BF=DF.∴BM=BF=DF=DM.∴四边形BMDF是菱形.⋯⋯⋯⋯⋯⋯⋯7分1、(08枣庄)如图,在直角坐标系中放入一个边长OC为9的矩形纸片ABCO.将纸片翻折后,点B恰好落在x3轴上,记为B
4、′,折痕为CE,已知tan∠OB′C=.41(1)求B′点的坐标;y(2)求折痕CE所在直线的解析式.CB解:E3(1)在Rt△B′OC中,tan∠OB′C=,OC=9,4OB′Ax93∴.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分OB4解得OB′=12,即点B′的坐标为(12,0).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分(2)将纸片翻折后,点B恰好落在x轴上的B′点,CE为折痕,∴△CBE≌△CB′E,故BE=B′E,CB′=CB=OA.22由勾股定理,得CB′=OBOC=15.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分设AE=a,则EB′=
5、EB=9-a,AB′=AO-OB′=15-12=3.222由勾股定理,得a+3=(9-a),解得a=4.∴点E的坐标为(15,4),点C的坐标为(0,9).·········································5分9b,设直线CE的解析式为y=kx+b,根据题意,得⋯⋯⋯⋯⋯6分415kb.b9,1解得1∴CE所在直线的解析式为y=-x+9.⋯⋯⋯⋯⋯⋯⋯8分k.332、(09益阳)如图11,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=A2,DC=3,求AD的长.小萍同学灵活运用轴对称知识,将图形进行翻折变
6、换,巧妙地解答了此题.请按照小萍的思路,探究并解答下列问题:F(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对E称点为E、F,延长EB、FC相交于G点,证明四边形AEGF是正方形;(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.BDC解析:(1)证明:由题意可得:△ABD≌△ABE,△ACD≌△ACF···········································1分G图11∴∠DAB=∠EAB,∠DAC=∠FAC,又∠BAC=45°,∴∠EAF=90°·············
7、·······················································································3分又∵AD⊥BC∴∠E=∠ADB=90°∠F=∠ADC=90°·································································4分又∵AE=AD,AF=AD∴AE=AF·······································································
8、····································5分∴四边形AEGF是正方形··················
此文档下载收益归作者所有