Data mining techniques for cancer detection using serum proteomic profiling

Data mining techniques for cancer detection using serum proteomic profiling

ID:39154914

大小:349.03 KB

页数:13页

时间:2019-06-25

Data mining techniques for cancer detection using serum proteomic profiling_第1页
Data mining techniques for cancer detection using serum proteomic profiling_第2页
Data mining techniques for cancer detection using serum proteomic profiling_第3页
Data mining techniques for cancer detection using serum proteomic profiling_第4页
Data mining techniques for cancer detection using serum proteomic profiling_第5页
资源描述:

《Data mining techniques for cancer detection using serum proteomic profiling》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ArtificialIntelligenceinMedicine(2004)32,71—83Dataminingtechniquesforcancerdetectionusingserumproteomicprofilinga,aaabLihuaLi*,HongTang,ZuobaoWu,JianliGong,MichaelGruidl,bbaJunZou,MelvynTockman,RobertA.ClarkaDepartmentofRadiology,CollegeofMedicine,H.LeeMoffittCa

2、ncerCenterandResearchInstitute,UniversityofSouthFlorida,Tampa,FL33612-4799,USAbDepartmentofInterdiciplinaryOncology,H.LeeMoffittCancerCenterandResearchInstitute,UniversityofSouthFlorida,Tampa,FL33612-4799,USAReceived29August2003;receivedinrevisedform30January2

3、004;accepted9March2004KEYWORDSSummaryObjective:PathologicalchangesinanorganortissuemaybereflectedinProteomics;Cancerproteomicpatternsinserum.Itispossiblethatuniqueserumproteomicpatternscoulddetection;Datamining;beusedtodiscriminatecancersamplesfromnon-canceron

4、es.DuetothecomplexityofStatisticaltesting;proteomicprofiling,ahigherorderanalysissuchasdataminingisneededtouncoverthedifferencesincomplexproteomicpatterns.Theobjectivesofthispaperare(1)toGeneticalgorithm;brieflyreviewtheapplicationofdataminingtechniquesinproteo

5、micsforcancerSupportvectormachinedetection/diagnosis;(2)toexploreanovelanalyticmethodwithdifferentfeatureselectionmethods;(3)tocomparetheresultsobtainedondifferentdatasetsandthatreportedbyPetricoinetal.intermsofdetectionperformanceandselectedproteomicpatterns

6、.Methodsandmaterial:ThreeserumSELDIMSdatasetswereusedinthisresearchtoidentifyserumproteomicpatternsthatdistinguishtheserumofovariancancercasesfromnon-cancercontrols.Asupportvectormachine-basedmethodisappliedinthisstudy,inwhichstatisticaltestingandgeneticalgor

7、ithm-basedmethodsareusedforfeatureselectionrespectively.Leave-one-outcrossvalidationwithreceiveroperatingcharacteristic(ROC)curveisusedforevaluationandcomparisonofcancerdetectionperformance.Resultsandconclusions:Theresultsshowedthat(1)dataminingtechniquescanb

8、esuccessfullyappliedtoovariancancerdetectionwithareasonablyhighperformance;(2)theclassificationusingfeaturesselectedbythegeneticalgorithmconsistentlyoutperformedthoseselectedbystatisticalt

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。