数学华东师大版七年级下册正多边形铺设地板

数学华东师大版七年级下册正多边形铺设地板

ID:39127683

大小:1.15 MB

页数:6页

时间:2019-06-25

数学华东师大版七年级下册正多边形铺设地板_第1页
数学华东师大版七年级下册正多边形铺设地板_第2页
数学华东师大版七年级下册正多边形铺设地板_第3页
数学华东师大版七年级下册正多边形铺设地板_第4页
数学华东师大版七年级下册正多边形铺设地板_第5页
资源描述:

《数学华东师大版七年级下册正多边形铺设地板》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、用相同正多边形拼地板一、教学目标1、知识目标:让学生通过自主的实践与探索,发现并理解正多边形能够铺满地面的道理。2、能力目标:通过数学实验的操作与探索,力图改变学生的学习方式,让学生自主探索、合作学习。3、德育目标:关注学生的情感体验,让学生感受到数学的美,认识到数学的价值。让学生在数学实验过程中体验合作与成功的喜悦,增强学生对数学的好奇心和求知欲。二、教学重难点1、重点:通过学生亲自操作使学生发现能拼成一个平面图形的关键是某一点处各多边形的内角和为360°。2、难点:寻找用哪几种正多边形能铺满地板。三、教学过程【讲述】随着现在生活水平的提高,对家庭居室进行装修成了许多人热衷的话题。装修房

2、屋不仅仅是花多少钱的问题,更重要的是良好的设计和构思,这就需要有较高的艺术欣赏能力和较好的数学基础。瓷砖是生活中常见的装饰材料,你见过哪些形状的瓷砖?它们的形状有什么特点呢?【展示】用各种多边形瓷砖铺地板的图片。这些瓷砖是怎么铺设的?一点空隙也没有!你知道瓷砖能铺满地面的奥秘吗?【生】不知道【师】想不想学?【生】想学【师】今天我们一起来学习“用相同正多边形拼地板”。☆设计意图:以生活中的瓷砖装修图片来创设情境,使学生感受到数学来源于生活而应用于生活。【师】首先回顾:铺设地板的要求是什么?【生】铺设地板的要求:不留下一丝空白;不相互重叠。【设疑】这要求与正多边形的哪些量有关?是边长?还是内角

3、?带着这个疑问,我们一起来探讨。【回顾】什么是正多边形?如果多边形的各边都相等,各内角也都相等,那么就称它为正多边形。1、n边形的内角和公式:(n-2)×180°外角和:360°2、正多边形每个内角=【师】根据公式算一算,填写下表。当n=3、4、5、6……时,正多边形的内角和、每个内角的度数分别是多少?【问题】小华的家里装修,打算用同一种正多边形的地砖来铺满整个地面,可是她想来想去不知道该选用哪种图形的好。你能帮助小华解决这个问题吗?☆设计意图:通过生活中的实际问题创设问题情境,提高学生研究问题的兴趣,激发学生探索新知的欲望,使学生进一步理解数学与现实生活的密切联系。【师】我们常见的正多边

4、形有哪些?【生】有正三角形、正四边形、正五边形、正六边形、正八边形……【师】你能用这些正多边形的瓷砖铺满地板吗?从中你能发现什么问题?得出什么结论?【活动探究】学生拼图活动正3边形:正4边形:正5边形:正6边形:正8边形:☆设计意图:让学生进行数学实验和自主探索,通过动手、动脑的操作实验,在一种浓厚的探究气氛中体验数学、发现一些数学现象或规律,并尝试解释原因,达到“知其然且知其所以为然”。【思考】通过前面的拼图你已经知道了,用正三角形、正四边形、正六边形能铺满平面,而正五边形、正八边形却不能铺满平面,为什么?【想一想】用同一种正多边形作平面铺设,需要满足什么条件?【演示】多媒体演示拼地板的

5、过程正边形每个内角的度数围绕一点拼在一起的正多边形个数每个内角的度数与360°的关系结论360°66×60°=360°能铺满490°44×90°=360°能铺满5108°33×108°<360°不能铺108°44×108°>360°不能铺6120°33×120°=360°能铺满8135°22×135°<360°不能铺135°33×135°>360°不能铺☆设计意图:教师用多媒体演示拼地板的过程,让学生更加直观的认识、理解正多边形能否铺满地面与内角的大小有关的道理。动手操作发现的结果只是一种感性认识,引导学生能借助所学的数学知识,通过准确的计算来验证,使学生的认知水平初步上升到理性阶段。【讲

6、述】从这个表格中,你能总结出铺满平面的正多边形要满足的条件吗?【归纳】结论1:使用给定的某种正多边形,当围绕一点拼在一起的几个内角和加在一起恰好组成一个周角(360°)时,就能拼成一个平面图形。【例题】为什么正七、正十、正二十边形不能铺满平面?分析:一个正多边形能不能铺满平面,只要看周角360O能否被一个内角度数整除,若能整除,则能铺满平面;若不能整除,则不能铺满平面。解:1、正七边形每个内角为,又因为周角360O不能被整除,所以正七边形不能铺满平面;2、正十边形每个内角为144O,又因为周角360O不能被144O整除,所以正十边形不能铺满平面;3、正二十边形每个内角为162O,又因为周角

7、360O不能被162O整除,所以正二十边形不能铺满平面。【归纳】结论2:如果一个正多边形可以铺满平面,那么这个正多边形的每个内角一定是360°的约数。换句话说:360°一定是这个正多边形每个内角的整数倍。【板演】符合这些规律的正多边形有哪些呢?数学模型:正多边形个数×正多边形一个内角度数=360º这就说明:当,即为正整数时,用这样的正n边形就可以铺满平面。探究:,n只能是哪些数?3、4、6。所以能用同一种正多边形拼满平面

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。