初二数学(下)知识点总结与拓展

初二数学(下)知识点总结与拓展

ID:39092882

大小:573.50 KB

页数:10页

时间:2019-06-24

初二数学(下)知识点总结与拓展_第1页
初二数学(下)知识点总结与拓展_第2页
初二数学(下)知识点总结与拓展_第3页
初二数学(下)知识点总结与拓展_第4页
初二数学(下)知识点总结与拓展_第5页
资源描述:

《初二数学(下)知识点总结与拓展》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、初二数学(下)知识点总结与拓展第十六章分式一.知识框架二.知识概念1.分式:形如A/B,A、B是整式,B中含有未知数且B不等于0的整式叫做分式(fraction)。其中A叫做分式的分子,B叫做分式的分母。2.分式有意义的条件:分母不等于03.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。4.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。5.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式.6.分式的基本性质:

2、分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。7.分式的四则运算:1.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a/c±b/c=a±b/c2.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a/b±c/d=ad±cb/bd3.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a/b*c/d=ac/bd4.分式的除法法则:(

3、1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.a/b÷c/d=ad/bc;(2).除以一个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b*d/c8.分式方程的意义:分母中含有未知数的方程叫做分式方程.9.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).三、拓展知识点(方法+技巧):1.分式是分数的“

4、代数化”,其性质与运算是完全类似的,类比分数学分式是学习分式的重要方法。2.分式的运算是以分式的基本性质、通分和约分的概念、运算法则为基础,以整式的变形、因式分解为工具。分式的加减运算是分式运算中的重点与难点,怎样合理地通分是化解这一难点的关键,恰当通分的基本策略与技巧有:分步通分;分组通分;先约分再通分;换元后通分等。3.当一个分式的分子的次数高于或等于分母的次数,就可以将分式化为整式部分与分式部分的和,这种变形叫拆分变形,这在分式运算中有非常广泛的运用。4.分式的化简求值:先化简后求值是解代数式

5、化简求值问题的基本策略,分式的化简求值通常分为有条件和无条件两类。给出一定的条件并在此条件下求分式的值的问题称为有条件的分式化简求值,解这类问题,既要瞄准目标,又要抓住条件,既要依据条件逼近目标,又要能根据目标变换条件,不但要经常用到整式化简求值的知识、方法,而且还要常常用到如下技巧策略:(1)适当引入参数;(2)拆项变形或拆分变形;(3)整体带入;(4)取倒数或利用倒数关系等。第十七章反比例函数一.知识框架二.知识概念1.定义:一般地,形如(为常数,)的函数称为反比例函数。还可以写成2.反比例函数

6、解析式的特征:⑴等号左边是函数,等号右边是一个分式。分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1.⑵比例系数⑶自变量的取值为一切非零实数。⑷函数的取值是一切非零实数。3.反比例函数的图像⑴图像的画法:描点法①列表(应以O为中心,沿O的两边分别取三对或以上互为相反的数)②描点(有小到大的顺序)③连线(从左到右光滑的曲线)⑵反比例函数的图像是双曲线,(为常数,)中自变量,函数值,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。⑶反比例函数的图

7、像是是轴对称图形(对称轴是或)。⑷反比例函数()中比例系数的几何意义是:过双曲线()上任意引轴轴的垂线,所得矩形面积为。4.反比例函数性质:如下表:的取值图像所在象限函数的增减性一、三象限在每个象限内,值随的增大而减小二、四象限在每个象限内,值随的增大而增大5.反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可求出)6.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数中的两个变量必成反比例关系。三、典型例题:【例1】如果函数的图像是双曲线

8、,且在第二,四象限内,那么的值是多少?【解析】有函数图像为双曲线则此函数为反比例函数,()即()又在第二,四象限内,则可以求出的值【答案】由反比例函数的定义,得:解得时函数为【例2】在反比例函数的图像上有三点,,,,,。若则下列各式正确的是(A)A.B.C.D.【解析】可直接以数的角度比较大小,也可用图像法,还可取特殊值法。解法一:由题意得,,,所以选A解法二:用图像法,在直角坐标系中作出的图像描出三个点,满足观察图像直接得到选A解法三:用特殊值法【例3】如果一次函数

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。