Computing the CEV option pricing formula using计算CEV期权定价公式 路径积分的半经典逼近

Computing the CEV option pricing formula using计算CEV期权定价公式 路径积分的半经典逼近

ID:39076297

大小:834.33 KB

页数:29页

时间:2019-06-24

Computing the CEV option pricing formula using计算CEV期权定价公式 路径积分的半经典逼近_第1页
Computing the CEV option pricing formula using计算CEV期权定价公式 路径积分的半经典逼近_第2页
Computing the CEV option pricing formula using计算CEV期权定价公式 路径积分的半经典逼近_第3页
Computing the CEV option pricing formula using计算CEV期权定价公式 路径积分的半经典逼近_第4页
Computing the CEV option pricing formula using计算CEV期权定价公式 路径积分的半经典逼近_第5页
资源描述:

《Computing the CEV option pricing formula using计算CEV期权定价公式 路径积分的半经典逼近》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ComputingtheCEVoptionpricingformulausingthesemiclassicalapproximationofpathintegralAxelA.Araneda∗andMarceloJ.Villena†‡Lastversion:March29,2018AbstractTheConstantElasticityofVariance(CEV)modelsignificantlyoutperformstheBlack-Scholes(BS)modelinforecastingbothpricesandoptions.Furtherm

2、ore,theCEVmodelhasamarkedadvantageincapturingbasicempiricalregularitiessuchas:heteroscedasticity,theleverageeffect,andthevolatilitysmile.Infact,theperformanceoftheCEVmodeliscomparabletomoststochasticvolatilitymodels,butitisconsiderableeasiertoimplementandcalibrate.Nevertheless,thes

3、tandardCEVmodelsolution,usingthenon-centralchi-squareapproach,stillpresentshighcomputationaltimes,speciallywhen:i)thematurityissmall,ii)thevolatilityislow,oriii)theelasticityofthevariancetendstozero.Inthispaper,anewnumericalmethodforcomputingtheCEVmodelisdeveloped.Thisnewapproachi

4、sbasedonthesemiclassicalapproximationofFeynman’spathintegral.OursimulationsshowthatthemethodisefficientandaccuratecomparedtothestandardCEVsolutionconsideringthepricingofEuropeancalloptions.Keywords:Optionpricing,constantelasticityofvariancemodel,pathintegral,numericalmethods.arXiv:1

5、803.10376v1[q-fin.CP]28Mar2018∗FacultyofEngineering&Sciences,UniversidadAdolfoIbáñez,Avda.DiagonallasTorres2640,Peñalolén,7941169Santiago,Chile.Email:axel.araneda@edu.uai.cl.†UniversidadAdolfoIbáñez,Address:DiagonalLasTorres2640,Peñalolén,Santiago,Chile.Telephone:56-223311491,Emai

6、l:marcelo.villena@uai.cl.‡AidfromtheFondecytProgram,projectNº1131096,isgratefulacknowledgedbyMarcelo.11IntroductionOneofthemostsignificantlimitationsoftheBlack-Scholes(BS)[1]modelistheassumptionofconstantvolatility,whichignoressomewell-knownempiricalregularitiessuchas:theleverageeff

7、ect[2,3],andthevolatilitysmile[4,5].Theseshortcomingshaveinspiredseveralnon-constantvolatilitymodelsincontinuoustime1,considering‘stochasticvolatility’2or‘level-dependentvolatility’models3[10].Intheformer,boththeassetandthevolatilityhavetheirowndiffusionprocesses.Inthelevel-depende

8、ntvolatilitymodelsonlytheassetisg

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。