欢迎来到天天文库
浏览记录
ID:38933728
大小:526.00 KB
页数:24页
时间:2019-06-21
《高二数学概率的意义》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.1.2概率的意义复习回顾你能回忆一下随机事件发生的概率的定义吗?事件A的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率,简称为A的概率。1、概率的正确理解问题1:有人说,既然抛掷一枚硬币出现正面的概率为0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上。你认为这种想法正确吗?让事实说话!让我们做一个抛掷硬币的试验,观察它落地时的情况。每人各取一枚同样的硬币,连续两次抛掷,观察它落地后的朝向
2、,并记录下结果,填入下表。重复上面的过程10次,把全班同学试验结果汇总,计算三种结果发生的频率。姓名试验次数两次正面朝上的次数、比例两次反面朝上的次数、比例一次正面朝上,一次反面朝上的次数、比例随着试验次数的增加,可以发现,“正面朝上、反面朝上各一次”的频率与“两次均正面朝上”“两次均反面朝上”的频率是不一样的,而且“两次均正面朝上”“两次均反面朝上”的频率大致相等;“正面朝上、反面朝上各一次”的频率大于“两次均正面朝上”(“两次均反面朝上”)的频率。事实上,“两次均反面朝上”的概率为0.25,“两次均反面
3、朝上”的概率也为0.25,“正面朝上、反面朝上各一次”的概率为0.5。随机性与规律性:随机事件在一次试验中发生与否是随机的,但随机性中含有规律性。认识了这种随机性中的规律性,就能为我们比较准确的预测随机事件发生的可能性。问题2:有人说,中奖率为的彩票,买1000张一定中奖,这种理解对吗?说明:虽然中奖张数是随机的,但这种随机性中具有规律性。随着试验次数的增加,即随着买的彩票张数的增加,大约有的彩票中奖。实际上,买1000张彩票中奖的概率为。没有一张中奖也是有可能的,其概率近似为0.3677。问题3:你能举出
4、生活中一些与概率有关的例子吗?问题4:随机事件发生的频率与概率的区别与联系是什么?1、频率本身是随机的,在试验前不能确定。做同样次数的重复试验得到事件的频率会不同。2、概率是一个确定的数,与每次试验无关。是用来度量事件发生可能性大小的量。3、频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率。二、概率在实际问题中的应用1、游戏的公平性2、决策中的概率思想3、天气预报的概率解释4、遗传机理中的统计规律1、游戏的公平性(1)你有没有注意到在乒乓球、排球等体育比赛中,如何确定由哪一方先发球?你觉得对比赛
5、双方公平吗?这样的游戏公平吗?1点2点3点4点5点6点1点2345672点3456783点4567894点56789105点678910116点7891011122、决策中的概率思想思考:如果连续10次掷一枚色子,结果都是出现1点,你认为这枚色子的质地均匀吗?为什么?如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则,这种判断问题的方法称为极大似然法。极大似然法是统计中重要的统计思想方法之一。3、天气预报的概率解释思考:某地气象局预报说,明天本地降水概
6、率为70%。你认为下面两个解释中哪一个能代表气象局的观点?(1)明天本地有70%的区域下雨,30%的区域不下雨;(2)明天本地下雨的机会是70%。4、遗传机理中的统计规律1、试验与发现2、遗传机理中的统计规律孟德尔小传从维也纳大学回到布鲁恩不久,孟德尔就开始了长达8年的豌豆实验。孟德尔首先从许多种子商那里,弄来了34个品种的豌豆,从中挑选出22个品种用于实验。它们都具有某种可以相互区分的稳定性状,例如高茎或矮茎、圆料或皱科、灰色种皮或白色种皮等。豌豆杂交试验孟德尔把黄色和绿色的豌豆杂交,第一年收获的豌豆是黄
7、色的。第二年,当他把第一年收获的黄色豌豆再种下时,收获的豌豆既有黄色的又有绿色的。同样他把圆形和皱皮豌豆杂交,第一年收获的都是圆形豌豆,连一粒。皱皮豌豆都没有。第二年,当他把这种杂交圆形再种下时,得到的却既有圆形豌豆,又有皱皮豌豆。豌豆杂交试验的子二代结果性状显性隐性显性:隐性子叶的颜色黄色6022绿色20013.01:1种子的性状圆形5474皱皮18502.96:1茎的高度长茎787短茎2772.84:1遗传机理中的统计规律子二代子一代亲本yyYYYYYyYyYyYyyyYY表示纯黄色的豌豆yy表示纯绿色
8、的豌豆(其中Y为显性因子y为隐性因子)黄色豌豆(YY,Yy):绿色豌豆(yy)≈3:11、解释下列概率的含义。(1)某厂生产产品合格的概率为0.9;(2)一次抽奖活动中,中奖的概率为0.2。2、先后抛掷两枚均匀的硬币。(1)一共可以出现多少种不同的结果?(2)出现“一枚正面,一枚反面”的结果有多少种?(3)出现“一枚正面,一枚反面”的概率是多少?(4)有人说:“一共可能出现‘2枚正面’、‘2枚反面’、‘1枚正面,
此文档下载收益归作者所有