欢迎来到天天文库
浏览记录
ID:38922407
大小:25.82 KB
页数:8页
时间:2019-06-21
《数学学科前沿讲座报告》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、数学学科前沿讲座通过一个学期的学习和学校数位专家教授的耐心讲解,产生了一些自己对数学学科的体会。下面就简要谈谈,通过听取前沿讲座我对数学学科的理解与变化。近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。因有数学,才有今天科技的繁荣,在我们身边到处都有数学问题。今天科技领域也以数学为基础。如计算机的发展,一切理论都是数学家提出的,某个物理学家要研究某个项目,都要以丰厚的
2、数学功底为前提。在人们的生活中,时刻与数学打交道,可谓世界因数学而精彩。既然数学有如此大的魅力,下面将粗略的介绍一下。数学曾出现三次危机:无理数的发现——第一次数学危机;无穷小是零吗——第二次数学危机;悖论的产生---第三次数学危机。数学历来被视为严格、和谐、精确的学科,纵观数学发展史,数学发展从来不是完全直线式的,他的体系不是永远和谐的,而常常出现悖论。在悖论中逐渐成熟,进而到现在出现多个分支,分为:基础数学、数论、代数学、几何学、拓扑学、函数论、常微分方程、偏微分方程、概率论、应用数学、运筹学。一、应用数学应用数学属于数学一级学科下的二级学科。应用数学是
3、应用目的明确的数学理论和方法的总称,它是数学理论知识与应用科学、工程技术等领域联系的重要纽带。应用数学主要研究具有实际背景或应用前景的数学理论或方法,以数学各个分支的应用基础理论为研究主体,同时也研究自然科学、工程技术、信息、经济、管理等科学中的数学问题,包括建立相应的数学模型、利用数学方法解决实际问题等。主要研究方向:(1)非线性偏微分方程非线性偏微分方程是现代数学的一个重要分支,无论在理论中还是在实际应用中,非线性偏微分方程均被用来描述力学、控制过程、生态与经济系统、化工循环系统及流行病学等领域的问题。利用非线性偏微分方程描述上述问题充分考虑到空间、时间
4、、时滞的影响,因而更能准确的反映实际。本方向主要研究非线性偏微分方程、H-半变分不等式、最优控制系统的微分方程理论及其在电力系统的应用。(2)拓扑学拓扑学,是近代发展起来的一个研究连续性现象的数学分支。中文名称起源于希腊语Τοπολογ的音译。Topology原意为地貌,于19世纪中期由科学家引入,当时主要研究的是出于数学分析的需要而产生的一些几何问题。发展至今,拓扑学主要研究拓扑空间在拓扑变换下的不变性质和不变量。拓扑学是数学中一个重要的、基础的分支。起初它是几何学的一支,研究几何图形在连续变形下保持不变的性质(所谓连续变形,形象地说就是允许伸缩和扭曲等变
5、形,但不许割断和粘合);现在已发展成为研究连续性现象的数学分支。由于连续性在数学中的表现方式与研究方法的多样性,拓扑学又分成研究对象与方法各异的若干分支。19世纪末,在拓扑学的孕育阶段,就已出现点集拓扑学与组合拓扑学两个方向。现在,前者演化为一般拓扑学,后者则成为代数拓扑学。后来,又相继出现了微分拓朴学、几何拓扑学等分支。拓扑学也是数学的一个分支,研究几何图形在连续改变形状时还能保持不变的一些特性,它只考虑物体间的位置关系而不考虑它们的距离和大小。举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。但是,
6、在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。例如,下面将要讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数。这些就是拓扑学思考问题的出发点。简单地说,拓扑就是研究有形的物体在连续变换下,怎样还能保持性质不变。几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现一些孤立的问题,后来在拓扑学的形成中占着重要的地位。在数学上,关于哥尼斯堡七桥问题、多面体的欧拉定理、四色问题等都是拓
7、扑学发展史的重要问题。哥尼斯堡七桥问题哥尼斯堡(今俄罗斯加里宁格勒)是东普鲁士的首都,普莱格尔河横贯其中。十八世纪在这条河上建有七座桥,将河中间的两个岛和河岸联结起来。人们闲暇时经常在这上边散步,一天有人提出:能不能每座桥都只走一遍,最后又回到原来的位置。这个看起来很简单又很有趣的问题吸引了大家,很多人在尝试各种各样的走法,但谁也没有做到。看来要得到一个明确、理想的答案还不那么容易。欧拉经过分析,得出结论——不可能每座桥都走一遍,最后回到原来的位置。并且给出了所有能够一笔画出来的图形所应具有的条件。这是拓扑学的“先声”。在拓扑学的发展历史中,还有一个著名而且
8、重要的关于多面体的定理也和欧拉有关。这个定理内容是:
此文档下载收益归作者所有