欢迎来到天天文库
浏览记录
ID:38891059
大小:1.42 MB
页数:5页
时间:2019-06-20
《6.8 多边形的内角和与外角和(二)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第六章平行四边形6.8多边形的内角和与外角和(二)信宜市思贺中学陈振广一、学生起点分析在上一节的学习中,学生已经掌握了多边形的内角和公式,对如何探究内角和的问题有了一定的认识,加之八年级学生的好奇心、求知欲强,互相评价、互相提问的积极性高.因此对于学习本节内容的知识条件已经成熟,学生也具备了参加探索活动的热情,所以考虑把这节课设计成一节探索活动课.二、学任务分析本节内容是七年级上册多边形相关知识的延展和升华,并且在探索学习过程中又与三角形相联系,从三角形的内角和到多边形的内角和环环相扣,前面的知识为后边的知
2、识做了铺垫,联系性比较强,特别是教材中设计了现实情境,“想一想”,“议一议”等内容,体现了课改的精神.在编写意图上,编者强调使学生经历探索、猜想、归纳等过程,回归多边形的几何特征,而不是硬背公式,发展了学生的合情推理能力.教学目标【知识与技能】经历探索多边形的外角和公式的过程;会应用公式解决问题;【过程与方法】培养学生把未知转化为已知进行探究的能力,在探究活动中,进一步发展学生的说理能力与简单的推理能力.【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满
3、着探索和创造.教学重难点【教学重点】多边形外角和定理的探索和应用.【教学难点】灵活运用公式解决简单的实际问题;转化的数学思维方法的渗透.三、教学过程设计本节课分成6个环节:第一环节:创设情境,引入新课;第二环节:问题解决;第三环节:多边形的外角和外角和;第四环节:巩固练习;第五环节:课时小结;第六环节:布置作业。第一环节创设情境,引入新课问题:(多媒体演示)清晨,小明沿一个五边形广场周围的小路,按逆时针方向跑步。(1)小明每从一条街道转到下一条街道时,身体转过的角是哪个角?(2)他每跑完一圈,身体转过的角度
4、之和是多少?(3)在上图中,你能求出∠1+∠2+∠3+∠4+∠5的结果吗?你是怎样得到的?目的:利用生活情境,设计问题,激发学生的兴趣和积极性,同时给学生一定的思考空间。第二环节问题解决对于上述的问题,如果学生能给出一些合理的解释和解答(例如利用内角和),可以按照学生的思路走下去。然后再给出“小亮的做法”或以“小亮做法”为提示,鼓励学生思考。如果学生对于这个问题无法突破,教师可以给出“小亮的做法”,或引导学生按“小亮的做法”这样的思路去思考,以便解决这个问题。小亮是这样思考的:如图所示,过平面内一点O分别作
5、与五边形ABCDE各边平行的射线OA′,OB′,OC′,OD′,OE′,得到∠α,∠β,∠γ,∠δ,∠θ,其中,∠α=∠1,∠β=∠2,∠γ=∠3,∠δ=∠4,∠θ=∠5.这样,∠1+∠2+∠3+∠4+∠5=360°问题引申:1.如果广场的形状是六边形那么还有类似的结论吗?2.如果广场的形状是八边形呢?目的:通过问题的解决和延伸,引发学生自主思考,由特殊到一般,培养学生解决问题的逻辑思维能力,也为多边形外角和的得出做好铺垫。第三环节多边形的外角与外角和1.多边形内角的一边与另一边的反向延长线所组成的角叫做这
6、个多边形的外角。2.在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和。探究多边形的外角和,提出一般性的问题:一个任意的凸n边形,它的外角和是多少?鼓励学生用多种方法解决这个问题,可以参考第二环节解决特殊问题的方法去解决这个一般性的问题。方法Ⅰ:类似探究多边形的内角和的方法,由三角形、四边形、五边形…的外角和开始探究;方法Ⅱ:由n边形的内角和等于(n-2)·180°出发,探究问题。结论:多边形的外角和等于360°(1)还有什么方法可以推导出多边形外角和公式?(2)利用多边形外角和的结论,能否
7、推导出多边形内角和的结论?第四环节巩固练习例1一个多边形的内角和等于它的外角和的3倍,它是几边形?解:设这个多边形是n边形,则它的内角和为(n-2)﹒180°,外角和为360°。则根据题意,得(n-2)﹒180°=3×360°解得n=8所以这个多边形是八边形。随堂练习1.一个多边形的内角和是外角和的2倍,这个多边形是几边形?如果一个多边形的每个内角都相等,那么每个内角等于多少度?2.右图是三个不完全相同的正多边形拼成的无缝隙、不重叠的图形的一部分,这种多边形是几边形?为什么?挑战自我:1.在四边形的四个内角
8、中,最多能有几个钝角?最多能有几个锐角?2.在n边形的n个内角中,最多能有几个钝角?最多能有几个锐角?挑战自我的2个问题,对于新授课上的学生而言,难度是比较大的。因为之前不管是多边形的内角和还是外角和,基本上都是利用等式,从“正向”解决的。而这里要解决的问题,在解决的过程中,需要用到简单的不等式知识和“反证”的思想,对于初次接触这些的学生而言,难度是比较大的。教师要注意讲解的方式方法。第五环节课时小结多边形的外角
此文档下载收益归作者所有