欢迎来到天天文库
浏览记录
ID:38887776
大小:182.00 KB
页数:7页
时间:2019-06-20
《河津市小梁乡西梁初中王文珍《直角三角形》》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第一章三角形的证明2.直角三角形(一)一、教学目标1.知识目标:(1)掌握直角三角形的性质定理(勾股定理)及判定定理的证明方法,并能应用定理解决与直角三角形有关的问题。(2)结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立,其逆命题不一定成立.2.能力目标:(1)进一步经历用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维.(2)进一步掌握推理证明的方法,发展演绎推理的能力.3.教学重点、难点重点①了解勾股定理及其逆定理的证明方法.②结合具体例子了解逆命题的概念,识别两个互逆命题
2、,知道原命题成立,其逆命题不一定成立.难点勾股定理及其逆定理的证明方法.二、教学过程本节课设计了七个教学环节:第一环节:创设情境,引入新课;第二环节:讲述新课;第三环节:议一议;第四环节:想一想;第五环节:.随堂练习;第六环节:课时小结;第七环节:课后作业。1:创设情境,引入新课通过问题1,让学生在解决问题的同时,回顾直角三角形的一般性质。[问题1]一个直角三角形房梁如图所示,其中BC⊥AC,∠BAC=30°,AB=10cm,CB1⊥AB,B1C⊥AC1,垂足分别是B1、C1,那么BC的长是多少?B1C1呢?解:在Rt
3、△ABC中,∠CAB=30°,AB=10cm,∴BC=AB=×10=5cm.∵CB1⊥AB,∴∠B+∠BCB1=90°又∵∠A+∠B=90°∴∠BCB1=∠A=30°在Rt△ACB1中,BB1=BC=×5=cm=2.5cm.∴AB1=AB=BB1=10—2.5=7.5(cm).∴在Rt△C1AB1中,∠A=30°∴B1C1=AB1=×7.5=3.75(cm).解决这个问题,主要利用了上节课已经证明的“30°角的直角三角形的性质”.由此提问:“一般的直角三角形具有什么样的性质呢?”从而引入勾股定理及其证明。教材中曾利用数
4、方格和割补图形的方法得到了勾股定理.如果利用公理及由其推导出的定理,能够证明勾股定理吗?请同学们打开课本P18,阅读“读一读”,了解一下利用教科书给出的公理和推导出的定理,证明勾股定理的方法.2:讲述新课阅读完毕后,针对“读一读”中使用的两种证明方法,着重讨论第一种,第二种方法请有兴趣的同学课后阅读.(1).勾股定理及其逆定理的证明.已知:如图,在△ABC中,∠C=90°,BC=a,AC=b,AB=c.求证:a2+b2=c2.证明:延长CB至D,使BD=b,作∠EBD=∠A,并取BE=c,连接ED、AE(如图),则△A
5、BC≌△BED.∴∠BDE=90°,ED=a(全等三角形的对应角相等,对应边相等).∴四边形ACDE是直角梯形.∴S梯形ACDE=(a+b)(a+b)=(a+b)2.∴∠ABE=180°-(∠ABC+∠EBD)=180°-90°=90°,AB=BE.∴S△ABE=c2∵S梯形ACDE=S△ABE+S△ABC+S△BED,∴(a+b)2=c2+ab+ab,即a2+ab+b2=c2+ab,∴a2+b2=c2教师用多媒体显示勾股定理内容,用课件演示勾股定理的条件和结论,并强调.具体如下:勾股定理:直角三角形两直角边的平方和等
6、于斜边的平方.反过来,如果在一个三角形中,当两边的平方和等于第三边的平方时,我们曾用度量的方法得出“这个三角形是直角三角形”的结论.你能证明此结论吗?师生共同来完成.已知:如图:在△ABC中,AB2+AC2=BC2求证:△ABC是直角三角形.分析:要从边的关系,推出∠A=90°是不容易的,如果能借助于△ABC与一个直角三角形全等,而得到∠A与对应角(构造的三角形的直角)相等,可证.证明:作Rt△A′B′C′,使∠A′=90°,A′B′=AB,A′C′、AC(如图),则A′B′2+A′C′2.(勾股定理).∵AB2+AC
7、2=BC2,A′B′=AB,A′C′∴BC2=B′C′2∴BC=B′C′∴△ABC≌△A′B′C′(SSS)∴∠A=∠A′=90°(全等三角形的对应角相等).因此,△ABC是直角三角形.总结得勾股逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.(2).互逆命题和互逆定理.观察上面两个命题,它们的条件和结论之间有怎样的关系?在前面的学习中还有类似的命题吗?通过观察,学生会发现:上面两个定理的条件和结论互换了位置,即勾股定理的条件是第二个定理的结论,结论是第二个定理的条件.这样的情况,在前面也曾
8、遇到过.例如“两直线平行,内错角相等”,交换条件和结论,就得到“内错角相等,两直线平行”.又如“在直角三角形中,如果一个锐角等于30°,那么它所对的直角边就等于斜边的一半”.交换此定理的条件和结论就可得“在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°”。3:议一议观察下面三组命题:学生以分组讨论形
此文档下载收益归作者所有