欢迎来到天天文库
浏览记录
ID:38886503
大小:108.86 KB
页数:5页
时间:2019-06-20
《十字相乘教学设计》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、课题:十字相乘法一、教学设计与说明一、教材分析:“十字相乘法分解因式”是七年级第二学期第八章第4节的内容,也是学生在学习提取公因式与公式法两种因式分解后的内容。学生对因式分解已有了解及应用,再借助十字交叉线分解因式,学生容易掌握,同时这节课也为以后学习分式的运算、一元二次方程、二次函数、分式方程、一元二次不等式等作铺垫,这节课无论从它的内容还是它的地位都十分重要。二、教学目标:1、进一步理解因式分解的定义;2、会用十字相乘法进行二次三项式()的因式分解;3、通过学生的不断尝试,培养学生的耐心和信心,
2、同时在尝试中提高学生的观察能力。三、教学的重点难点教学重点:能熟练应用十字相乘法进行二次三项式()的因式分解。教学难点:在分解因式时,准确地找出、,使,。四、教学设计1、通过学生对问题的“议一议”,发现“”不是一个完全平方形式,产生了究竟是否还能分解的问题,学生带着问题进入新课。(吸引学生)2、通过学生对多项式乘法的“算一算”,巩固了多项式的乘法的知识,又观察到了计算中含有“”这个结论,为以下“想一想”作了充分准备。3、通过学生对多项式乘法遗留问题的“想一想”,既加深了对因式分解定义的理解,又得到了
3、“”的分解结果,从而过渡到“”的分解。4、借助十字交叉线给师生互动,让学生“动一动”理解十字相乘法的定义。5、通过学生的多次尝试,用“做一做”的环节来体验“如何用十字相乘法因式分解”。6、知道了十字相乘法,那么“练一练”的环节是不可缺少的,通过“练一练”,学生就有实践的体会,并能把知识延伸与拓展,学生学习兴趣盎然。7、最后是学生的自主小结,交流各自的感受,达成共识。总之,整节课力争体现学生学习的主动性,让学生完全参与整节课的教学活动,体验知识的发生发展过程,通过多次尝试,培养学生的耐心和信心,提高学
4、生的观察能力。二、教案一、教学目标:1、进一步理解因式分解的定义;2、会用十字相乘法进行二次三项式()的因式分解;3、通过学生的不断尝试,培养学生的耐心和信心,同时在尝试中提高学生的观察能力。二、教学的重点难点教学重点:能熟练应用十字相乘法进行二次三项式()的因式分解。教学难点:在分解因式时,准确地找出、,使,。三、教学过程:(一)提出问题,导入新课议一议:1:什么叫因式分解?2:至今为止你学会了哪几种因式分解?3:怎样把和分解因式?4:=中的是不是最后的结果呢?(二)、复习旧知,发现新知算一算:1
5、、请同学们计算下列各题:(1)(2)(3)(4)(5)(6)2、若把上面的等式的左右两边进行交换,即:(1)(2)(3)(4)(5)(6)从上面可知:凡碰到的多项式都是二次三项式,且二次项的系数都为1。想一想:1:以上等式从左到右是因式分解吗?2:能分解吗?3:若二次三项式中的,,则的因式分解的结果是什么?动一动:在多项式分解时,也可以借助画十字交叉线来分解。分解为,常数项2分解,把它们用交叉线来表示:+2+1所以++同样:=可以用交叉线来表示:十字相乘法的定义:利用十字交叉来分解系数,把二次三项式
6、分解因式的方法叫做十字相乘法。做一做:如何用十字相乘法因式分解?学生尝试,小结。教师给出解题的格式。即解:=(三)、精选例题,感受新知例:分解因式:(1)(2)(3)(4)解:略(四)、巩固新知,运用提高练一练:1、因式分解:(1)(2)(3)(4)(5)2、(1)若多项式可分解为,则的值为.(2)若多项式可分解为,则的值为.3、思考题:若多项式可分解为,求、的值.(五)、自主小结,达成共识1、这堂课中你学到什么?你有什么感受?2、你还有什么问题需要解决。(六)、作业1、课本P52练习8.151(3
7、)(4)(5)(6);2、基础练习部分P32习题1、2、3、4。
此文档下载收益归作者所有