资源描述:
《《常见神经网络模型》PPT课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、智能控制技术中国计量学院自动化教研室谢敏1智能控制技术第4章人工神经元网络模型4.1引言4.2常见神经网络模型24.2常见神经网络模型一、感知器感知器(Perceptron)模型由美国心理学家Rosenblatt于1958年提出,其简化模型如下图:4.2常见神经网络模型3一、感知器4.2常见神经网络模型感知器的数学模型:其中:f[.]是阶跃函数或符号函数,并且有θ是阈值。4感知器的最大作用就是可以对输入的样本分类,故它可作分类器,感知器对输入信号的分类如下:即:当感知器的输出为1时,输入样本称为A类;输出为0时,输入样本称为B类。感知器的分类边界是:4.2常见神经网络模型一、感知
2、器5在输入样本只有两个分量x1,x2时,则有分类边界条件:即w1x1+w2x2-θ=04.2常见神经网络模型一、感知器6感知器的学习算法:感知器的学习算法目的在于找寻恰当的权系数w=(w1,w2,…,wn),使系统对一个特定的样本x=(x1,x2,…,xn)能产生期望输出y。当x分类为A类时,期望值y=1;X为B类时,y=0。4.2常见神经网络模型一、感知器74.2常见神经网络模型一、感知器感知器的学习算法:1、初始化:置权系数w为最小的随机数;2、训练:输入一样本x=(x1,x2,…,xn)以及它的期望输出y*;3、计算实际输出:;4、计算误差:;5、修改权系数和阈值;6、转2
3、,直到误差满足要求。84.2常见神经网络模型一、感知器例:有一组训练向量,对单输出感知器有:X1=[-1,1,-2,0]T,X2=[-1,0,1.5,-0.5]T,X3=[-1,-1,1,0.5]T,设初始权值为Wi(0)=[0.5,1,-1,0]T,η=0.3,期望输出为Y1=0,Y2=0,Y3=1,试训练感知器网络。94.2常见神经网络模型一、感知器从感如器的学习算法可知,学习的目的是在于修改网络中的权系数,使网络对于所输入的模式样本能正确分类。当学习结束时,也即神经网络能正确分类时,显然权系数就反映了同类输人模式样本的共同特征。换句话讲,权系数就是存储了的输入模式。由于权系
4、数是分散存在的,故神经网络自然而然就有分布存储的特点。104.2常见神经网络模型一、感知器感知器实质是一个分类器,可以用于实现逻辑函数。其分类条件是样本是线性可分的。例:用感知器实现逻辑函数X1UX2的真值:X10011X20101X1UX20111114.2常见神经网络模型一、感知器以X1UX2=1为A类,以X1UX2=0为B类,则有方程组:令W1=1,W2=2,则有:θ≤1取θ=0.5,则有:X1+X2-0.5=0124.2常见神经网络模型一、感知器x1x2(0,0)(0,1)(1,0)(1,1)x1x2(0,0)(0,1)(1,0)(1,1)逻辑与逻辑或逻辑异或x1x2(0
5、,0)(0,1)(1,0)(1,1)x1x2(0,0)(0,1)(1,0)(1,1)13二、BP网络4.2常见神经网络模型1986年,Rumelhart提出了一种利用误差反向传播(BackPropagation)训练算法的神经网络,简称BP网络,是一种多层前向网络,其特征为:1、由输入层、隐含层、输出层组成;2、同层节点之间没有互连;3、每层节点的输出只影响下层节点;4、激励函数多为S型。14二、BP网络4.2常见神经网络模型BP网络的数学模型:设有一个m层的神经网络,并在输入层加有样本X;第k层的i神经元的输入总和表示为Uik,输出Xik;从第k-1层的第j个神经元到第k层的第
6、i个神经元的权系数为Wij,各神经元的激励函数为f,则各个变量的关系可用下面有关数学式表示:15二、BP网络4.2常见神经网络模型BP网络的学习算法:反向传播算法分二步进行,即输入信号正向传播和误差信号反向传播。1.输入信号正向传播输入的样本从输入层经过隐层单元一层一层进行处理,通过所有的隐层之后,则传向输出层,每一层神经元的状态只对下一层神经元的状态产生影响。2.误差信号反向传播在输出层把现行输出和期望输出进行比较,如果现行输出不等于期望输出,则进入反向传播过程。误差信号按原来正向传播的通路反向传回,并对每个隐层的各个神经元的权系数进行修改,以望误差信号趋向最小。16二、BP网
7、络4.2常见神经网络模型BP网络的学习算法:1、初始化:置权系数w为最小的随机数;2、训练:给出输入样本x=(x1,x2,…,xn)以及期望输出y=(y1,y2,…yn);3、计算输出:按顺序计算隐含层、输出层各神经元输出;4、计算期望输出与实际输出的误差;5、修改输出层的权系数和阈值;6、修改隐含层的权系数和阈值;7、转3,直到误差满足要求。17二、BP网络4.2常见神经网络模型BP网络的学习算法:例:P.774-118二、BP网络4.2常见神经网络模型车牌数字识别神经网络对图