欢迎来到天天文库
浏览记录
ID:38825292
大小:121.20 KB
页数:9页
时间:2019-06-19
《高中数学公式及定理》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、高中数学公式及定理madebySzd1.乘法与因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2)a^3-b^3=(a-b(a^2+ab+b^2)2.三角不等式
2、a+b
3、≤
4、a
5、+
6、b
7、
8、a-b
9、≤
10、a
11、+
12、b
13、
14、a
15、≤b<=>-b≤a≤b
16、a-b
17、≥
18、a
19、-
20、b
21、-
22、a
23、≤a≤
24、a
25、3.一元二次方程的解-b+√(b^2-4ac)/2a-b-√(b^2-4ac)/2a4.根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b^2-4ac=0注:方程有两个相
26、等的实根b^2-4ac>0注:方程有两个不等的实根�b^2-4ac<0注:方程没有实根,有共轭复数根5.三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB
27、+cotA)�cot(A-B)=(cotAcotB+1)/(cotB-cotA)6.倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^27.半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-co
28、sA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA))cot(A/2)=-√((1+cosA)/((1-cosA))9高中数学公式及定理madebySzd8.和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B))2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((
29、A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB;9.某些数列前n项和1+2+3+4+5+6+7+8+9+⋯+n=n(n+1)/21+3+5+7+9+11+13+15+⋯+(2n-1)=n2_2+4+6+8+10+12+14+⋯+(2n)=n(n+1)51^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+⋯+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+⋯n^3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+
30、6*7+⋯+n(n+1)=n(n+1)(n+2)/310.正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径11.余弦定理b^2=a^2+c^2-2accosB注:角B是边a和边c的夹角圆的标准方程(x-a)^2+(y-b)^2=^r2注:(a,b)是圆心坐标_圆的一般方程x^2+y^2+Dx+Ey+F=0注:D^2+E^2-4F>012.抛物线标准方程y^2=2pxy^2=-2pxx^2=2pyx^2=-2py13.直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=
31、1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r14.锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h�斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h;9高中数学公式及定理madebySzd定理:1过两点有且只有一条
32、直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,
此文档下载收益归作者所有