欢迎来到天天文库
浏览记录
ID:38772211
大小:94.50 KB
页数:9页
时间:2019-06-19
《人工神经网络分析编程实现》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、人工神经网络分析编程实现一、神经网络1.BP网络的特点1)网络实质上实现了一个从输入到输出的映射功能,而数学理论已证明它具有实现任何复杂非线性映射的功能。这使得它特别适合于求解内部机制复杂的问题。我们无需建立模型,或了解其内部过程,只需输入,获得输出。只要BPNN结构优秀,一般20个输入函数以下的问题都能在50000次的学习以内收敛到最低误差附近。而且理论上,一个三层的神经网络,能够以任意精度逼近给定的函数,这是非常诱人的期望;2)网络能通过学习带正确答案的实例集自动提取“合理的”求解规则,即具有自学习能力;3)网络具有一定的推广、概括能力。2.bp主要应用1)回归预测(可以进行拟合,数据
2、处理分析,事物预测,控制等)2)分类识别(进行类型划分,模式识别等)3.BP注意问题1)BP算法的学习速度很慢,其原因主要有:a由于BP算法本质上为梯度下降法,而它所要优化的目标函数又非常复杂,因此,必然会出现“锯齿形现象”,这使得BP算法低效;b存在麻痹现象,由于优化的目标函数很复杂,它必然会在神经元输出接近0或1的情况下,出现一些平坦区,在这些区域内,权值误差改变很小,使训练过程几乎停顿;c为了使网络执行BP算法,不能用传统的一维搜索法求每次迭代的步长,而必须把步长的更新规则预先赋予网络,这种方法将引起算法低效。2)网络训练失败的可能性较大,其原因有:a从数学角度看,BP算法为一种局部
3、搜索的优化方法,但它要解决的问题为求解复杂非线性函数的全局极值,因此,算法很有可能陷入局部极值,使训练失败;b网络的逼近、推广能力同学习样本的典型性密切相关,而从问题中选取典型样本实例组成训练集是一个很困难的问题。3)网络结构的选择:尚无一种统一而完整的理论指导,一般只能由经验选定。为此,有人称神经网络的结构选择为一种艺术。而网络的结构直接影响网络的逼近能力及推广性质。因此,应用中如何选择合适的网络结构是一个重要的问题。4、新加入的样本要影响已学习成功的网络,而且刻画每个输入样本的特征的数目也必须相同。5、采用s型激活函数,由于输出层各神经元的理想输出值只能接近于1或0,而不能打到1或0,
4、因此设置各训练样本的期望输出分量Tkp时,不能设置为1或0,设置0.9或0.1较为适宜。6.网络的泛化能力一个神经网路是否优良,与传统最小二乘之类的拟合评价不同(主要依据残差,拟合优度等),不是体现在其对已有的数据拟合能力上,而是对后来的预测能力,既泛化能力。网络的预测能力(也称泛化能力、推广能力)与训练能力(也称逼近能力、学习能力)的矛盾。一般情况下,训练能力差时,预测能力也差,并且一定程度上,随训练能力地提高,预测能力也提高。但这种趋势有一个极限,当达到此极限时,随训练能力的提高,预测能力反而下降,即出现所谓“过拟合”现象。此时,网络学习了过多的样本细节,而不能反映样本内含的规律。7.
5、过拟合神经网络计算不能一味地追求训练误差最小,这样很容易出现“过拟合”现象,只要能够实时检测误差率的变化就可以确定最佳的训练次数,比如15000次左右的学习次数,如果你不观察,设成500000次学习,不仅需要很长时间来跑,而且最后结果肯定令人大失所望。避免过拟合的一种方法是:在数据输入中,给训练的数据分类,分为正常训练用、变量数据、测试数据。其中变量数据,在网络训练中,起到的作用就是防止过拟合状态。8.学习速率学习速率这个参数可以控制能量函数的步幅,并且如果设为自动调整的话,可以在误差率经过快速下降后,将学习速率变慢,从而增加BPNN的稳定性。代码:DE>net.trainFcn='tra
6、ingda';%变学习率梯度下降算法net.trainFcn='traingdx';%变学习率动量梯度下降算法DE>代码:DE>p=[-1-122;0505];t=[-1-111];net=newff(p,t,3,{},'traingda');net.trainParam.lr=0.05;net.trainParam.lr_inc=1.05;net=train(net,p,t);y=sim(net,p)DE>9.神经网络的权值和阈值权值和阈值是神经元之间的连接,将数据输入计算出一个输出,然后与实际输出比较,误差反传,不断调整权值和阈值。引用:p1=[11-1]';p2=[1-1-1]';这
7、里用单层神经元感知器,假设初始权值代码:DE>w=[0.20.20.3]DE>同时假设初始阀值代码:DE>b=-0.3DE>输出a1a2代码:DE>a1=hardlims(w*p1+b)a2=hardlims(w*p2+b)DE>如果不能分开,还须不断调整w,b二、神经网络的优化用BP逼近非线性函数,如何提高训练精度(1)调整网络结构增加网络的层数可以进一步降低误差,提高精度但会使网络复杂化,从而增加网络的训练时间。精度
此文档下载收益归作者所有