欢迎来到天天文库
浏览记录
ID:38732633
大小:214.00 KB
页数:15页
时间:2019-06-18
《一种弱信号目标检测的优化方法》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、说明书摘要本发明涉及一种弱信号目标检测的优化方法,其具体步骤如下:(1)读取离散化后的输入信号;(2)对信号x(n)进行四重自相关;(3)计算相关函数的频谱;(4)由相关信号的频谱,根据信号的频谱与自相关函数频谱的关系,由四重相关信号频谱计算信号的频谱;(5)计算匹配滤波器的传输函数;(6)求信号经过匹配滤波器的频谱;(7)采用多正弦窗进行谱估计;(8)将信号频谱还原为时域信号。本发明方法中,利用四重相关和双谱(四重相关函数的频谱函数)分析,实现高阶矩范围内信号处理,采用匹配滤波器进行滤波,该滤波器能够给出最大的信噪比。四重相关匹配滤波
2、技术较之二重相关匹配滤波技术,可以进一步抑制噪声,从而提高信噪比。多正弦窗谱估计具有较小的偏差。同时,由于进行了多个特征谱的加权平均,对谱图会有一定的平滑效果,因此谱估计的方差性能较传统的周期图法会有显著的改善;同时能够保证一定的频率分辨能力。2说明书摘要2摘要附图1权利要求书1、一种弱信号目标检测的优化方法,其特征在于:其具体步骤如下:(1)读取离散化后的输入信号:x(n)n=0,1,2……N-1,其中N为信号x(t)的采样点数;(2)对输入信号x(n)进行四重自相关,具体方法为,设信号x(n)包括有用信号s(n)和随机加性噪声u(n
3、),信号表达式为:x(n)=s(n)+u(n),首先对输入信号x(n)进行二重自相关:m=0,1,2……N-1根据信号与信号相关,信号与噪声的不相关性,有:即:,表明含噪信号x(n)的二重相关近似等于有用信号s(n)的二重自相关。信号x(n)的三重自相关可表示为:根据与相关,与噪声的不相关性,有:表明含噪信号x(n)的三重相关近似等于有用信号s(n)的三重自相关。同理,可得,信号x(n)的四重相关可表示为:3权利要求书即含噪信号x(n)的四重相关近似等于有用信号s(n)的四重自相关。(3)计算相关函数和输入信号x(n)的频谱:k=0,1
4、,2……N-1k=0,1,2……N-1(4)由相关信号的频谱,根据信号的频谱与自相关函数频谱的关系,利用公式,由四重相关信号频谱计算有用信号s(n)的频谱;(5)计算匹配滤波器的传输函数:当线性滤波器传输函数为输入信号频潜函数的复共轭时,该滤波器能够给出最大的信噪比,这种滤波器称为匹配滤波器;匹配滤波器的传输函数为:;(6)求信号经过匹配滤波器的频谱:经过滤波后的信号的频谱为:(7)采用多正弦窗进行谱估计:窗函数取为:n=0,1,2……N-1设K为正弦窗数量,为第个正弦窗的加权系数,则经过滤波后的信号的多正弦窗谱估计为:其中为第k个特征
5、谱。而k=0,1,2……N-1所以多正弦窗谱估计可表示为:3权利要求书(8)将信号频谱还原为时域信号:n=0,1,2……N-1(备注:需要针对上述出现多个参数予以定义,也需要说明,各个字母所代表的含义,大小写均需要说明,如果表示含义一致,那么大小字母应当统一,如需要说明Ω代表的含义,H代表的含义,等等,其他没有定义的字符含义均需要定义或者予以说明)3说明书一种弱信号目标检测的优化方法技术领域本发明涉及一种弱信号目标检测的优化方法,属于计算机算法技术领域。背景技术相关检测技术是根据噪声与噪声、噪声与信号均不相关,而信号与信号则完全相关的特
6、性,通过相关运算达到去除噪声的一种技术。现已普遍证明,它是从噪声中提取有用信号,提高输出信噪比的有效方法。它在自动控制、通信、雷达等领域都获得了广泛的应用。四重相关和双谱(四重相关函数的频谱函数)分析就是高阶矩范围内的信号处理方法,由于零均值的高斯平稳随机过程的四重相关等于零,以及四重相关具有位移和旋转不变性等特点,并且双谱富有丰富的冗余信息。被动式监控探测系统,例如红外监控探测系统较之于主动式探测系统具有难以比拟的优势。然而,被动式目标探测系统所要探测的信号通常迭加有强噪声。因此,从强噪声中将有用的信号提取出来,就成为目标识别的前提。
7、四重相关检测技术可实现信号与噪声的分离,去除噪声。采用匹配滤波器,给出最大的信噪比。通常,对监控探测系统所探测到的目标信号的处理主要是利用二阶统计矩,即功率谱和二重相关函数,这就是二重相关匹配滤波技术。从频域角度来分析,二重相关匹配滤波器可以最大限度地吸收有用信号的能量,而最大限度地抑制信号频带以外的噪声。根据信号与噪声的不同频谱特点,采用线性滤波器消除噪声频谱。当线性滤波器传输函数为输入信号频潜函数的复共轭时,该滤波器能够给出最大的信噪比。然而,许多实验研究表明,无论二重相关滤波器设计得多么精细,信号频带之内的噪声仍然是难以抑制的。为
8、了进一步提高信噪比,应该设法抑制信号频带之内的噪声。一个有效的解决办法就是采用高阶矩范围内的信号处理方法。四重相关和双谱(四重相关函数的频谱函数)分析就是高阶矩范围内的信号处理片法,由于零均值的高斯平稳随机
此文档下载收益归作者所有