基于数字信号处理之语音识别论文

基于数字信号处理之语音识别论文

ID:38711809

大小:386.63 KB

页数:27页

时间:2019-06-18

基于数字信号处理之语音识别论文_第1页
基于数字信号处理之语音识别论文_第2页
基于数字信号处理之语音识别论文_第3页
基于数字信号处理之语音识别论文_第4页
基于数字信号处理之语音识别论文_第5页
资源描述:

《基于数字信号处理之语音识别论文》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《通信综合实训》姓名唐文祥学号1230614008同组成员黄义川1230614002莫雨晨1230614005夏爽1230614012指导教师张红燕时间2014年6月26日摘要本文针对语音信号时域、频域参数进行了系统详尽的分析,并在MATLAB环境下实现了基于DTW算法的特定人孤立词语音信号的识别。关键词:语音信号;短时傅里叶;MFCC;动态时间规整IIAbstractthisarticleinviewofthespeechsignalintimedomain,frequencydomainparametersofsystemanalysis,andbasedonDTWalgo

2、rithmwasrealizedinMATLABenvironmentthespeaker-dependentisolatedwordspeechsignalrecognition.Keywords:speechsignal;Short-timeFourier;MFCC;DynamictimeneatII目录摘要IAbstractII1语音信号的分析11.1参数分析11.2时域分析11.2.1短时能量分析11.2.2短时过零率分析11.3频域分析22语音信号的处理22.1特定人孤立词语音识别系统分析22.2 语音识别算法——高效的DTW算法33.MATLAB仿真验证43.1 语

3、音信号预处理43.2 特征参数提取及语音识别53总结6参考文献7程序8II1语音信号的分析1.1参数分析语音信号是一种典型的非平稳信号。但是,由于语音的形成过程是与发音器官的运动密切相关的,这种物理运动比起声音振动速度来讲要缓慢得多,因此语音信号常常可被假定为短时平稳的,即在10一20ms这样的时间段内,其频谱特性和某些物理特征参量可被近似地看作不变。这样,我们就可以采用平稳过程的分析处理方法来处理,一般而言语音信号处理的方法都是基于这种短时平稳的假设的。根据语音信号所分析参数的不同,语音信号参数分析可以分为时域、频域、倒谱域分析等[4]。本文仅涉及时域及频域参数分析。1.2时

4、域分析进行语音信号最为直观的分析方法就是时域分析。语音信号本身就是时域信号,因而时域分析是最早使用,也是应用最广泛的一种方法,这种方法直接利用语音信号的时域波形。时域分析通常用于最基本的参数分析以及语音的分割、预处理和大分类等。时域分析方法的特点是:第一,表示语音信号比较直观,物理意义明确;第二,实现起来比较简单,运算量少;第三,可以得到语音的一些重要参数;第四,采用示波器等通用设备,使用简单[5]。1.2.1短时能量分析短时能量分析用途:第一,可以区分清音段和浊音段,因为浊音时的短时平均能量值比清音时大得多;第二,可以用来区分声母与韵母的分界、无声与有声的分界、连字的分界等。

5、如对于高信噪比的语音信号,短时平均能量用来区分有无语音。无语音信号噪声的短时平均能量很小,而有语音信号的能量则显著增大到某一个数值,由此可以区分语音信号的开始点或者终止点。1.2.2短时过零率分析过零就是信号通过零值。对于连续语音信号,可以考察其时域波形通过时间轴的情况。对于离散时间信号,如果相邻的取样值改变符号则称为过零。由此可以计算过零数,过零数就是样本改变符号的次数。单位时间内的过零数称为平均过零数。短时过零分析通常用在端点侦测,特别是用来估计清音的起始位置和结束位置。221.3频域分析短时傅立叶分析在运用离散时间傅立叶变换分析语音信号的变化时,会遇到这样的问题,即单一的

6、傅立叶变换并不能反映时间变化的频谱信息,诸如时变共振峰和谐波。具体而言,通常将信号的每一时刻与其相邻时刻信号的傅立叶变换相联系,这样就可以及时跟踪信号的频谱变化。语音信号的短时傅立叶变换见程序所述。可以验证,在短时傅立叶分析中对于同一种窗函数而言,其通带宽度与窗长成反比。如果希望频率分辨率高,则窗长应尽量取长一些;如果希望时间分辨率高,则窗长尽量取短一些。由此可见,傅立叶分析的时间分辨率和频率分辨率是相互矛盾的,这是短时傅立叶本身所固有的弱点。短时傅立叶分析一般采用汉明窗作为分析窗[6]。通过基于MATLAB和短时频域分析,能够得出[7]:第一,长窗具有较高的频率分辨率,但具有

7、较低的时间分辨率。从一个周期到另一个周期,共振峰是要发生变化的,这一点即使从语音波形上也能够看出来。然而,如果采用较长的窗,这种变化就模糊了,因为长窗起到了时间上的平均作用。第二,短窗的频率分辨率低,但具有较高的时间分辨率。采用短窗时,能够从短时频谱中提取出共振峰从一个周期到另一个周期所发生的变化。当然,激励源的谐波结构也从短时频谱上消失了。第三,在对语音信号进行短时傅里叶分析时,窗长需要折衷考虑。一方面,短窗具有较好的时间分辨率因而能够提取出语音信号中的短时变化;但另一方面,损失了频率分辨

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。