资源描述:
《Using the Self-Organizing Map》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、PAPERSUBMITTEDTOTHESPECIALISSUEOFIEEETNNONTEMPORALCODING1IdenticationandControlofDynamicalSystemsUsingtheSelf-OrganizingMapGuilhermeA.Barreto,member,IEEE,andAluizioF.R.AraujoAbstract
2、Inthispaper,weintroduceageneralmodelingforfunctionapproximation,insteadoftheusualsupe
3、r-technique,calledVector-QuantizedTemporalAssociativeMem-visedones(MLPandRBF).Thistechnique,calledVector-ory(VQTAM),whichusesKohonen'sSelf-OrganizingMapQuantizedTemporalAssociativeMemory(VQTAM),shows(SOM)asanalternativetoMLPandRBFneuralmodelsfordynamicalsystemidenticat
4、ionandcontrol.Wedemon-thattheSOMcanbesuccessfullyusedtoapproximatestratethattheestimationerrorsdecreaseastheSOMtrain-dynamicalinput-outputmappings,withminormodica-ingproceeds,allowingtheVQTAMschemetobeunderstoodtionsintheoriginalalgorithm.TheSOMisanunsuper-asaself-supe
5、rvisedgradient-basederrorreductionmethod.Theperformanceoftheproposedapproachisevaluatedonavisedneuralalgorithmdesignedtobuildarepresentationvarietyofcomplextasks,namely:(i)timeseriesprediction,ofneighborhood(spatial)relationshipsamongvectorsof(ii)identicationofSISO/MIM
6、Osystems,and(iii)nonlin-anunlabelleddataset.TheneuronsintheSOMareputearpredictivecontrol.Foralltasks,thesimulationresultstogetherinanoutputlayer,A,inone-,two-oreventhree-producedbytheSOMareasaccurateasthoseproducedbytheMLPnetwork,andbetterthanthoseproducedbythedimension
7、alarrays.Eachneuroni2Ahasaweightvec-RBFnetwork.TheSOMhasalsoshowntobelesssensitivetorw28、eirrelationshipstootherwell-establishedmethodsforcompetitive-cooperativeschemeinwhichtheweightvec-dynamicalsystemidentication.Wealsosuggestdirectionstorsofawinningneuronanditsneighborsintheoutputforfurtherwork.arrayareupdatedafterthepresentationofaninputvec-Keywords
9、Se
10、lf-organizingmaps,timedelays,temporaltor.Usually,atrainedSOMisusedforclusteringanddataassociativememory,functi