欢迎来到天天文库
浏览记录
ID:38541284
大小:1.89 MB
页数:41页
时间:2019-06-14
《专题五 第3讲》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第3讲 圆锥曲线中的热点问题高考定位1.圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一;2.以椭圆或抛物线为背景,尤其是与条件或结论相关存在性开放问题.对考生的代数恒等变形能力、计算能力有较高的要求,并突出数学思想方法考查.真题感悟答案A1.圆锥曲线中的范围、最值问题,可以转化为函数的最值问题(以所求式子或参数为函数值),或者利用式子的几何意义求解.温馨提醒圆锥曲线上点的坐标是有范围的,在涉及到求最值或范围问题时注意坐标范围的影响.2.定点、定
2、值问题(1)定点问题:在解析几何中,有些含有参数的直线或曲线的方程,不论参数如何变化,其都过某定点,这类问题称为定点问题.考点整合若得到了直线方程的点斜式:y-y0=k(x-x0),则直线必过定点(x0,y0);若得到了直线方程的斜截式:y=kx+m,则直线必过定点(0,m).(2)定值问题:在解析几何中,有些几何量,如斜率、距离、面积、比值等基本量和动点坐标或动直线中的参变量无关,这类问题统称为定值问题.3.存在性问题的解题步骤:(1)先假设存在,引入参变量,根据题目条件列出关于参变量的方程(组)或不
3、等式(组).(2)解此方程(组)或不等式(组),若有解则存在,若无解则不存在.(3)得出结论.热点一 圆锥曲线中的最值、范围【例1】(2016·浙江卷)如图所示,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于
4、AF
5、-1.(1)求p的值;(2)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.探究提高求圆锥曲线中范围、最值的主要方法:(1)几何法:若题目中的条件和结论能明显体现几何特征和意义,则考虑利用
6、图形性质数形结合求解.(2)代数法:若题目中的条件和结论能体现一种明确的函数关系,或者不等关系,或者已知参数与新参数之间的等量关系等,则利用代数法求参数的范围.热点二 定点、定值问题命题角度1圆锥曲线中的定值探究提高1.求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.定值问题求解的基本思路是使用参数表示要解决的问题,然后证明与参数无关,这类问题选择消元的方向是非常关键的.命题角度2圆锥曲线中的定点问题探
7、究提高1.动直线l过定点问题.设动直线方程(斜率存在)为y=kx+t,由题设条件将t用k表示为t=mk,得y=k(x+m),故动直线过定点(-m,0).2.动曲线C过定点问题.引入参变量建立曲线C的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.热点三 圆锥曲线中的存在性问题探究提高1.此类问题一般分为探究条件、探究结论两种.若探究条件,则可先假设条件成立,再验证结论是否成立,成立则存在,不成立则不存在;若探究结论,则应先求出结论的表达式,再针对其表达式进行讨论,往往涉及对参数的讨论.2.求解步
8、骤:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在,否则,元素(点、直线、曲线或参数)不存在.解(1)∵直线2x-y+2=0与y轴的交点为(0,2),∴F(0,2),则抛物线C的方程为x2=8y,准线l:y=-2.设过D作DG⊥l于G,则
9、DF
10、+
11、DE
12、=
13、DG
14、+
15、DE
16、,当E,D,G三点共线时,
17、DF
18、+
19、DE
20、取最小值2+3=5.(2)假设存在,抛物线x2=2py与直线y=2x+2联立方程组得:x2
21、-4px-4p=0,设A(x1,y1),B(x2,y2),Δ=(4p)2+16p=16(p2+p)>0,则x1+x2=4p,x1x2=-4p,∴Q(2p,2p).1.解答圆锥曲线的定值、定点问题,从三个方面把握:(1)从特殊开始,求出定值,再证明该值与变量无关:(2)直接推理、计算,在整个过程中消去变量,得定值;(3)在含有参数的曲线方程里面,把参数从含有参数的项里面分离出来,并令其系数为零,可以解出定点坐标.2.圆锥曲线的范围问题的常见求法(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考
22、虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值.3.存在性问题求解的思路及策略(1)思路:先假设存在,推证满足条件的结论,若结论正确,则存在;若结论不正确,则不存在.(2)策略:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件.
此文档下载收益归作者所有