欢迎来到天天文库
浏览记录
ID:38385218
大小:345.84 KB
页数:15页
时间:2019-06-11
《史密斯圆图原理》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配功率放大器输出(RFOUT)与天线之间的匹配LNA/VCO输出与混频器输入之间的匹配匹配的目的是为了保证信号或能量有效地从信号源传送到负载。在高频端,寄生元件(比如连线上的电感板层之间的电容和导体的电阻)对匹配网络具有明显的不可预知的影响频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试并进行适当调谐需要用计算值确定电路的结构类型和相应的目标元件
2、值。有很多种阻抗匹配的方法,包括·计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂设计者必须熟悉用正确的格式输入众多的数据设计人员还需要具有从大量的输出结果中找到有用数据的技能另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上·手工计算: 这是一种极其繁琐的方法,因为需要用到较长(几公里)的计算公式并且被处理的数据多为复数·经验: 只有在RF领域工作过多年的人才能使用这种方法总之,它只适合于资深的专家·史密斯圆图:本文要重点讨论的内容本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法讨论的主题包括参
3、数的实际范例,比如找出匹配网络元件的数值当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析图1.阻抗和史密斯圆图基础基础知识在介绍史密斯圆图的使用之前,最好回顾一下RF环境下(大于100MHz)IC连线的电磁波传播现象这对RS-485传输线PA和天线之间的连接LNA和下变频器/混频器之间的连接等应用都是有效的大家都知道,要使信号源传送到负载的功率最大,信号源阻抗必须等于负载的共轭阻抗,即:Rs +jXs =RL -jXL图2.表达式Rs +jXs =RL -jXL的等效图在这个条件下,从信号源到负载传输的能量最大另外
4、,为有效传输功率,满足这个条件可以避免能量从负载反射到信号源,尤其是在诸如视频传输RF或微波网络的高频应用环境更是如此史密斯圆图史密斯圆图是由很多圆周交织在一起的一个图正确的使用它,可以在不作任何计算的前提下得到一个表面上看非常复杂的系统的匹配阻抗,唯一需要作的就是沿着圆周线读取并跟踪数据史密斯圆图是反射系数(伽马,以符号表示)的极座标图反射系数也可以从数学上定义为单端口散射参数,即s11史密斯圆图是通过验证阻抗匹配的负载产生的这里我们不直接考虑阻抗,而是用反射系数L,反射系数可以反映负载的特性(如导纳增益跨导),在处理RF频率的问题时L更加有用我们知道反射系数定义为反射波电压与入射波电
5、压之比:图3.负载阻抗负载反射信号的强度取决于信号源阻抗与负载阻抗的失配程度反射系数的表达式定义为:由于阻抗是复数,反射系数也是复数为了减少未知参数的数量,可以固化一个经常出现并且在应用中经常使用的参数这里Z0 (特性阻抗)通常为常数并且是实数,是常用的归一化标准值,如5075100和600于是我们可以定义归一化的负载阻抗:据此,将反射系数的公式重新写为:从上式我们可以看到负载阻抗与其反射系数间的直接关系但是这个关系式是一个复数,所以并不实用我们可以把史密斯圆图当作上述方程的图形表示为了建立圆图,方程必需重新整理以符合标准几何图形的形式(如圆或射线)首先,由方程2.3求解出; 并且令等式
6、2.5的实部和虚部相等,得到两个独立的关系式:重新整理等式2.6,经过等式2.8至2.13得到最终的方程2.14这个方程是在复平面(r,i)上圆的参数方程(x-a)2 +(y-b)²=R²,它以(r/r+1,0)为圆心,半径为1/1+r. 更多细节参见图4a 图4a.圆周上的点表示具有相同实部的阻抗例如,r=1的圆,以(0.5,0)为圆心,半径为0.5它包含了代表反射零点的原点(0,0)(负载与特性阻抗相匹配)以(0,0)为圆心半径为1的圆代表负载短路负载开路时,圆退化为一个点(以1,0为圆心,半径为零)与此对应的是最大的反射系数1,即所有的入射波都被反射回来 在作史密斯圆图时,有一些需
7、要注意的问题下面是最重要的几个方面:·所有的圆周只有一个相同的,唯一的交点(1,0)·代表0也就是没有电阻(r=0)的圆是最大的圆·无限大的电阻对应的圆退化为一个点(1,0)·实际中没有负的电阻,如果出现负阻值,有可能产生振荡·选择一个对应于新电阻值的圆周就等于选择了一个新的电阻作图经过等式2.15至2.18的变换,2.7式可以推导出另一个参数方程,方程2.19同样,2.19也是在复平面(r,i)上的圆的参数方程(x-a)²+(y-
此文档下载收益归作者所有