GAUGE THEORIES IN PARTICLE PHYSICS ed .3rd vol2 solutions外文书

GAUGE THEORIES IN PARTICLE PHYSICS ed .3rd vol2 solutions外文书

ID:38369672

大小:412.05 KB

页数:88页

时间:2019-06-11

GAUGE THEORIES IN PARTICLE PHYSICS ed .3rd vol2 solutions外文书_第1页
GAUGE THEORIES IN PARTICLE PHYSICS ed .3rd vol2 solutions外文书_第2页
GAUGE THEORIES IN PARTICLE PHYSICS ed .3rd vol2 solutions外文书_第3页
GAUGE THEORIES IN PARTICLE PHYSICS ed .3rd vol2 solutions外文书_第4页
GAUGE THEORIES IN PARTICLE PHYSICS ed .3rd vol2 solutions外文书_第5页
资源描述:

《GAUGE THEORIES IN PARTICLE PHYSICS ed .3rd vol2 solutions外文书》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、SolutionstoproblemsinGaugeTheoriesinParticlePhysics",ThirdEdition,volume2:QCDandtheElectroweakTheory"Chapter1212.1Theelementsoftheset(whichwewanttoshowformagroup)areyyall22matricesVwhichareunitary(i.e.VV=VV=I)and2havedeterminantequalto+1.Weneedtoshowthatconditions(i)-(iv)listedinsectionM.1ofAp

2、pendixMaresatis ed,wherethelawofcombinationisordinarymatrixmultiplication.(i)LetVandVbeanytwomembersoftheset.Theirproductis12VV.Clearly(bytherulesofmatrixmultiplication)thisisa2212ymatrix.Toseeifitisunitary,weform(VV)(VV).Usingthe1212yyygeneralmatrixresult(AB)=BAthisbecomesyyy(VV)(VV)=VV(V)(V)12

3、121221y=VI(V)=I1212using rsttheunitarityofVandthenthatofV.Sotheproductof21anytwosuchmatricesisaunitary22matrix.Similarly,det(VV)=12(detV)(detV)=1usingthe`detV=1'conditionforeachmatrix.So12theproductofanytwosuchmatricesisaunitary22matrixwithdeterminant+1,andthereforetheproductalsobelongstothesam

4、eset,verifyingproperty(i).(ii)Matrixmultiplicationisassociative.(iii)TheidentityelementisI.2y(iv)TheinverseofanyelementVisV,bytheunitarityproperty.12.2Visgivenbyequation(12.17)whichwemaywriteasin !1+ii1112V=:in i1+i2122HencedetV=(1+i)(1+i)+in 112212211+i(+);1122to rstorderin,sothatthe

5、conditiondetV=1reducesto+in 11=0,whichisjustTr=0.2212.3Thecommutationrelationscanbecheckedbystraightforwardmatrixmultiplicationwiththe22matrices.12.4Wehave111111[T;T]=++:::;++:::ij(1)i(2)i(A)i(1)j(2)j(A)j222222111111=;+;+:::;(1)i(1)j(2)i(2)j(A)i(A)j222222111=i++:::i

6、jk(1)k(2)k(A)k222=iT;(1)ijkkwhereinthesecondlineweusedthefactthatthe'sassociatedwithdi erentnucleonscommute,andinthethirdlineweusedequation(12.28)foreachoftheindependent's.(1)12.5The(j;k)element(j=rowlabel,k=columnlabel)ofTisi.The1jk1(1)onlynon-zeroentriesareforj=2;k=3,giving(T)=i,andfor231

7、(1)j=3;k=2,giving(T)=i.Hence32101000(1)BCT=00i:@A10i0Similarly,0100i(1)BCT=000;@A2i00and010i0(1)BCi00T=:@A3000Itisthenamatterofstraightforwardmatrixmultiplicationtocheck(12.47)forthecasei;j;k=1;2;3.12.6Weexpandequat

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。