高中数学课件:3.1.2概率的意义(新人教必修3)

高中数学课件:3.1.2概率的意义(新人教必修3)

ID:38369032

大小:379.31 KB

页数:9页

时间:2019-06-11

高中数学课件:3.1.2概率的意义(新人教必修3)_第1页
高中数学课件:3.1.2概率的意义(新人教必修3)_第2页
高中数学课件:3.1.2概率的意义(新人教必修3)_第3页
高中数学课件:3.1.2概率的意义(新人教必修3)_第4页
高中数学课件:3.1.2概率的意义(新人教必修3)_第5页
资源描述:

《高中数学课件:3.1.2概率的意义(新人教必修3)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、3.1.2概率的意义对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率稳定在某个常数上,把这个常数记作P(A),称为事件A的概率,简称为A的概率。1.概率的定义是什么?2.频率与概率的有什么区别和联系?①频率是随机的,在实验之前不能确定;②概率是一个确定的数,与每次实验无关;③随着实验次数的增加,频率会越来越接近概率。④频率是概率的近似值,概率是用来度量事件发生可能性的大小问题1:有人说,既然抛掷一枚硬币出现正面的概率为0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上,你认为这种想法正确吗?1.概率的

2、正确理解:答:这种说法是错误的,抛掷一枚硬币出现正面的概率为0.5,它是大量试验得出的一种规律性结果,对具体的几次试验来讲不一定能体现出这种规律性,在连续抛掷一枚硬币两次的试验中,可能两次均正面向上,也可能两次均反面向上,也可能一次正面向上,一次反面向上问题2:若某种彩票准备发行1000万张,其中有1万张可以中奖,则买一张这种彩票的中奖概率是多少?买1000张的话是否一定会中奖?1.概率的正确理解:答:不一定中奖,因为买彩票是随机的,每张彩票都可能中奖也可能不中奖。买彩票中奖的概率为1/1000,是指试验次数相当大,即随着购买彩票的张数的增

3、加,大约有1/1000的彩票中奖随机事件在一次实验中发生与否是随机的,但随机性中含有规律性:即随着实验次数的增加,该随机事件发生的频率会越来越接近于该事件发生的概率。1.概率的正确理解:2.概率在实际问题中的应用:某中学高一年级有12个班,要从中选2个班代表学校参加某项活动,由于某种原因,1班必须参加,另外再从2至12班中选一个班,有人提议用如下方法:掷两个骰子得到的点数和是几,就选几班,你认为这种方法公平吗?1点2点3点4点5点6点1点2345672点3456783点4567894点56789105点678910116点789101112

4、2.概率在实际问题中的应用:例1.在做掷硬币的实验的时候,若连续掷了100次,结果100次都是正面朝上,对于这样的结果你会有什么看法?例2.在一个不透明的袋子中有两种球,一种白球,一种红球,并且这两种球一种有99个,另一种只有1个,若一个人从中随机摸出1球,结果是红色的,那你认为袋中究竟哪种球会是99个?如果我们面临的是从多个可选答案中挑选正确答案的决策问题,那么“使得样本出现的可能性最大”可以作为决策的准则,这种判断问题的方法称为极大似然法。如果我们的判断结论能够使得样本出现的可能性最大,那么判断正确的可能性也最大,这种判断问题的方法在统

5、计学中被称为似然法。2.概率在实际问题中的应用:若某地气象局预报说,明天本地降水概率为70%,你认为下面两个解释哪一个能代表气象局的观点?(1)明天本地有70%的区域下雨,30%的区域不下雨;(2)明天本地有70%的机会下雨。(1)概率与公平性的关系:利用概率解释游戏规则的公平性,判断实际生活中的一些现象是否合理。(2)概率与决策的关系:在“风险与决策”中经常会用到统计中的极大似然法:在一次实验中,概率大的事件发生的可能性大。(3)概率与预报的关系:在对各种自然现象、灾害的研究过程中经常会用到概率的思想来进行预测。2.概率在实际问题中的应用

6、:

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。