视频监控智能分析技术应用分析

视频监控智能分析技术应用分析

ID:38179260

大小:26.38 KB

页数:6页

时间:2019-06-06

视频监控智能分析技术应用分析_第1页
视频监控智能分析技术应用分析_第2页
视频监控智能分析技术应用分析_第3页
视频监控智能分析技术应用分析_第4页
视频监控智能分析技术应用分析_第5页
资源描述:

《视频监控智能分析技术应用分析》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、视频监控智能分析技术应用分析一、概述  在视频监控飞速发展的今天,海量视频画面已经大大超过了人力有效处理的范围。而智能视频分析技术极大地发挥与拓展了视频监控系统的作用与能力,使监控系统具有更高的智能化,大幅度降低资源与人员配置,全面提升安全防范工作的效率。目前已广泛应用于平安城市、智能交通、金融行业、政法监管、商业等领域。  智能视频分析技术是计算机视觉技术在安防领域应用的一个分支,是一种基于目标行为的智能监控技术。它能够在图像或图像序列与事件描述之间建立映射关系,从而使计算机从纷繁的视频图像中分辩、识别出关键目标的行为,

2、过滤用户不关心的信息,其实质是自动分析和抽取视频源中的关键信息。  按照智能分析算法实现的方式进行区分,可以概括为以下几种类型的智能分析:  识别类分析:该项技术偏向于对静态场景的分析处理,通过图像识别、图像比对及模式匹配等核心技术,实现对人、车、物等相关特征信息的提取与分析。如人脸识别技术、车牌识别技术及照片比对技术等。  行为类分析:该项技术侧重于对动态场景的分析处理,典型的功能有车辆逆行及相关交通违章检测、防区入侵检测、围墙翻越检测、绊线穿越检测、物品偷盗检测、客流统计等。  图像检索类分析:该技术能按照所定义的规则

3、或要求,对历史存储视频数据进行快速比对,把符合规则或要求的视频浓缩、集中或剪切到一起,这样就能快速检索到目标视频。  图像处理类分析:主要是对图像整体进行分析判断及优化处理以达到更好的效果或者将不清楚的内容通过算法计算处理达到看得清的效果。如目前的视频增强技术(去噪、去雾、锐化、加亮等)、视频复原技术(去模糊、畸变矫正等)。  诊断类分析:该项分析主要是针对视频图像出现的雪花、滚屏、模糊、偏色、增益失衡、云台PTZ失控、画面冻结等常见的摄像头故障进行准确分析、判断和报警,如视频质量诊断技术。  二、智能分析核心算法介绍  

4、1.运动检测算法  帧差法...  相邻或间隔较近的两帧图像中按照对应位置直接进行像素值相减,从而获得差分图像。在差分图像中,若对应位置处像素值很小,则可认为其静止;如果对应位置的像素值较大,则可认为此处为运动部分。  帧差法相对简单,对于动态环境具有较强的自适应性,鲁棒性较好。但是易产生空洞现象,如果空洞过大则会影响轮廓完整性,将很难提取出准确的运动目标区域。  应用帧差法时要求背景绝对静止或基本无变化,噪声较小,目标运动速度不为零,目标区域内亮度变化较为明显。对于存在抖动、噪声等情况下的检测效果不佳,对于动态背景下的目

5、标跟踪,则必须采用其他的方法先对全局运动做出补偿,如块匹配法、坐标变换法等。  背景差分法  混合高斯模型法(GaussianMixtureModel,GMM)也称为统计背景模型法。该算法的思想是:对于缓慢变化的背景,可以用正态分布来表征像素灰度值的变化,每一种背景像素的值都可以通过多个高斯分布的加权和来描述。最早提出的是三分布GMM,每个像素点用三个高斯分布来分别表征背景、前景的阴影、前景这三种不同的模式,但实际情况很复杂,对背景、前景等模式都限定只用一个高斯分布来描述是不够的。因而之后又出现了固定分布数K的混合高斯分布

6、模型(Fixed-KGaussianMixtureModel)以及后面发展而来的基于自适应分布数K的混合高斯分布模型(Adaptive-KGaussianMixtureModel,AKGMM)。  二值化  一幅图像包括目标物体、背景还有噪声,要想从多值的数字图像中直接提取出目标物体,最常用的方法就是设定一个阈值T,用T将图像的数据分成两部分:大于T的像素群和小于T的像素群。这是研究灰度变换的最特殊的方法,称为图像的二值化。  图像的二值化,就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的只有黑和

7、白的视觉效果。  中值滤波  中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值。  中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。  膨胀腐蚀...  膨胀和腐蚀是两种基本的形态学运算。腐蚀就是使用算法,将图像的边缘腐蚀掉,作用就是将目标的边缘的“毛刺”剔除掉,即将物体与周围背景点分离。膨胀就是使用算法,将图像的边缘

8、扩大些,作用就是将目标的边缘或者是内部的坑填掉,即将物体与周围背景点结合。  2.车牌识别算法  车牌定位算法  对经过预处理后的二值车牌图像进行一阶水平差分得到跳变点图,分别统计水平和垂直方向上的跳变点个数(投影),通过设置标签和区域连通,粗定位车牌的上下和左右边界;选取一定区域的车牌图像进行色彩空间

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。